1887

Abstract

We have investigated beta interferon (IFN-) and IFN-4 gene expression and activation of related transcription factors in mouse cytomegalovirus (MCMV)-infected fibroblasts. mRNA analysis demonstrated an initial phase of IFN gene induction upon MCMV infection, which was followed by a sustained MCMV-mediated simultaneous downregulation of IFN- and IFN-4 gene expression. The induction of IFN transcription resulted from the activation of the components of the IFN- enhanceosome, i.e. IFN regulatory factor (IRF) 3, nuclear factor (NF)-B, activating transcription factor (ATF)-2 and c-Jun. Activation of the transcription factors occurred rapidly and in a sequential order upon infection, but only lasted a while. As a consequence, IFN-/ gene expression became undetectable 6 h post-infection and throughout the MCMV replication cycle. This effect is based on an active interference since restimulation of IFN gene induction by further external stimuli (e.g. Sendai virus infection) was completely abolished. This inhibition required MCMV gene expression and was not observed in cells infected with UV-inactivated MCMV virions. The efficiency of inhibition is achieved by a concerted blockade of IB degradation and a lack of nuclear accumulation of IRF3 and ATF-2/c-Jun. Using an MCMV mutant lacking pM27, a signal transducer and activator of transcription (STAT) 2-specific inhibitor of Jak/STAT signalling, we found that the initial phase of IFN induction and the subsequent inhibition does not depend on the positive-IFN feedback loop. Our findings indicate that the MCMV-mediated downregulation of IFN transcription in fibroblasts relies on a large arsenal of inhibitory mechanisms targeting each pathway that contributes to the multiprotein enhanceosome complex.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83538-0
2008-05-01
2019-11-15
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/5/1131.html?itemId=/content/journal/jgv/10.1099/vir.0.83538-0&mimeType=html&fmt=ahah

References

  1. Abate, D. A., Watanabe, S. & Mocarski, E. S. ( 2004; ). Major human cytomegalovirus structural protein pp65 (ppUL83) prevents interferon response factor 3 activation in the interferon response. J Virol 78, 10995–11006.[CrossRef]
    [Google Scholar]
  2. Andoniou, C. E., van Dommelen, S. L. H., Voigt, V., Andrews, D. M., Brizard, G., Asselin-Paturel, C., Delale, T., Stacey, K. J., Trinchieri, G. & Degli-Esposti, M. A. ( 2005; ). Interaction between conventional dendritic cells and natural killer cells is integral to the activation of effective antiviral immunity. Nat Immunol 6, 1011–1019.[CrossRef]
    [Google Scholar]
  3. Benedict, C. A., Banks, T. A., Senderowicz, L., Ko, M., Britt, W. J., Angulo, A., Ghazal, P. & Ware, C. F. ( 2001; ). Lymphotoxins and cytomegalovirus cooperatively induce interferon-beta, establishing host-virus détente. Immunity 15, 617–626.[CrossRef]
    [Google Scholar]
  4. Boehme, K. W., Singh, J., Perry, S. T. & Compton, T. ( 2004; ). Human cytomegalovirus elicits a coordinated cellular antiviral response via envelope glycoprotein B. J Virol 78, 1202–1211.[CrossRef]
    [Google Scholar]
  5. Brinkmann, M. M., Spooner, E., Hoebe, K., Beutler, B., Ploegh, H. L. & Kim, Y. M. ( 2007; ). The interaction between the ER membrane protein UNC93B and TLR3, 7, and 9 is crucial for TLR signaling. J Cell Biol 177, 265–275.[CrossRef]
    [Google Scholar]
  6. Browne, E. P. & Shenk, T. ( 2003; ). Human cytomegalovirus UL83-coded pp65 virion protein inhibits antiviral gene expression in infected cells. Proc Natl Acad Sci U S A 100, 11439–11444.[CrossRef]
    [Google Scholar]
  7. Brune, W., Hengel, H. & Koszinowski, U. H. ( 1999; ). A mouse model for cytomegalovirus infection. In Current Protocols in Immunology, pp. 19.7.1–19.7.3. New York: John Wiley & Sons.
  8. Child, S. J., Hakki, M., De Niro, K. L. & Geballe, A. P. ( 2004; ). Evasion of cellular antiviral responses by human cytomegalovirus TRS1 and IRS1. J Virol 78, 197–205.[CrossRef]
    [Google Scholar]
  9. Child, S. J., Hanson, L. K., Brown, C. E., Janzen, D. M. & Geballe, A. P. ( 2006; ). Double-stranded RNA binding by a heterodimeric complex of murine cytomegalovirus m142 and m143 proteins. J Virol 80, 10173–10180.[CrossRef]
    [Google Scholar]
  10. Darnell, J. E., Kerr, I. M. & Stark, G. R. ( 1994; ). Jak-Stat pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264, 1415–1421.[CrossRef]
    [Google Scholar]
  11. Delale, T., Paquin, A., Asselin-Paturel, C., Dalod, M., Brizard, G., Bates, E. E. M., Kastner, P., Chan, S., Akira, S. & other authors ( 2005; ). MyD88-dependent and -independent murine cytomegalovirus sensing for IFN-α release and initiation of immune responses in vivo. J Immunol 175, 6723–6732.[CrossRef]
    [Google Scholar]
  12. Goodbourn, S. & Maniatis, T. ( 1988; ). Overlapping positive and negative regulatory domains of the human beta-interferon gene. Proc Natl Acad Sci U S A 85, 1447–1451.[CrossRef]
    [Google Scholar]
  13. Haller, O., Kochs, G. & Weber, F. ( 2006; ). The interferon response circuit: induction and suppression by pathogenic viruses. Virology 344, 119–130.[CrossRef]
    [Google Scholar]
  14. Heise, M. T., Connick, M. & Virgin, H. W. ( 1998; ). Murine cytomegalovirus inhibits interferon γ-induced antigen presentation to CD4 T cells by macrophages via regulation of expression of major histocompatibility complex class II associated genes. J Exp Med 187, 1037–1046.[CrossRef]
    [Google Scholar]
  15. Hengel, H., Koszinowski, U. H. & Conzelmann, K. K. ( 2005; ). Viruses know it all: new insights into IFN networks. Trends Immunol 26, 396–401.[CrossRef]
    [Google Scholar]
  16. Isaacs, A. & Lindenmann, J. ( 1957; ). Virus interference. 1. The interferon. Proc R Soc Lond B Biol Sci 147, 258–267.[CrossRef]
    [Google Scholar]
  17. Ishii, K. J. & Akira, S. ( 2006; ). Innate immune recognition of, and regulation by, DNA. Trends Immunol 27, 525–532.[CrossRef]
    [Google Scholar]
  18. Ishii, K. J., Coban, C., Kato, H., Takahashi, K., Torii, Y., Takeshita, F., Ludwig, H., Sutter, G., Suzuki, K. & other authors ( 2006; ). A Toll-like receptor-independent antiviral response induced by double-stranded B-form DNA. Nat Immunol 7, 40–48.[CrossRef]
    [Google Scholar]
  19. Jarvis, M. A., Borton, J. A., Keech, A. M., Wong, J., Britt, W. J., Magun, B. E. & Nelson, J. A. ( 2006; ). Human cytomegalovirus attenuates interleukin-1β and tumor necrosis factor alpha proinflammatory signaling by inhibition of NF-κB activation. J Virol 80, 5588–5598.[CrossRef]
    [Google Scholar]
  20. Karin, M. & Ben Neriah, Y. ( 2000; ). Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu Rev Immunol 18, 621 [CrossRef]
    [Google Scholar]
  21. Kato, H., Takeuchi, O., Sato, S., Yoneyama, M., Yamamoto, M., Matsui, K., Uematsu, S., Jung, A., Kawai, T. & other authors ( 2006; ). Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441, 101–105.[CrossRef]
    [Google Scholar]
  22. Katze, M. G., He, Y. P. & Gale, M. ( 2002; ). Viruses and interferon: a fight for supremacy. Nat Rev Immunol 2, 675–687.[CrossRef]
    [Google Scholar]
  23. Khan, S., Zimmermann, A., Basler, M., Groettrup, M. & Hengel, H. ( 2004; ). A cytomegalovirus inhibitor of gamma interferon signaling controls immunoproteasome induction. J Virol 78, 1831–1842.[CrossRef]
    [Google Scholar]
  24. Krug, A., French, A. R., Barchet, W., Fischer, J. A. A., Dzionek, A., Pingel, J. T., Orihuela, M. M., Akira, S., Yokoyama, W. M. & Colonna, M. ( 2004; ). TLR-9-dependent recognition of MCMV by IPC and DC generates coordinated cytokine responses that activate antiviral NK cell function. Immunity 21, 107–119.[CrossRef]
    [Google Scholar]
  25. Kucharczak, J., Simmons, M. J., Fan, Y. J. & Gelinas, C. ( 2003; ). To be, or not to be: NF-κB is the answer – role of Rel/NF-κB in the regulation of apoptosis. Oncogene 22, 8961–8982.[CrossRef]
    [Google Scholar]
  26. Lee, Y., Sohn, W. J., Kim, D. S. & Kwon, H. J. ( 2004; ). NF-κB- and c-Jun-dependent regulation of human cytomegalovirus immediate-early gene enhancer/promoter in response to lipopolysaccharide and bacterial CpG-oligodeoxynucleotides in macrophage cell line RAW 264.7. Eur J Biochem 271, 1094–1105.[CrossRef]
    [Google Scholar]
  27. Lin, R., Heylbroeck, C., Pitha, P. M. & Hiscott, J. ( 1998; ). Virus-dependent phosphorylation of the IRF-3 transcription factor regulates nuclear translocation, transactivation potential, and proteasome-mediated degradation. Mol Cell Biol 18, 2986–2996.
    [Google Scholar]
  28. Ludwig, S., Ehrhardt, C., Neumeier, E. R., Kracht, M., Rapp, U. R. & Pleschka, S. ( 2001; ). Influenza virus-induced AP-1-dependent gene expression requires activation of the JNK signaling pathway. J Biol Chem 276, 10990–10998.[CrossRef]
    [Google Scholar]
  29. Maniatis, T. ( 1986; ). Mechanisms of human beta-interferon gene regulation. Harvey Lect 82, 71–104.
    [Google Scholar]
  30. Maniatis, T., Falvo, J. V., Kim, T. H., Kim, T. K., Lin, C. H., Parekh, B. S. & Wathelet, M. G. ( 1998; ). Structure and function of the interferon-beta enhanceosome. Cold Spring Harb Symp Quant Biol 63, 609–620.[CrossRef]
    [Google Scholar]
  31. Marie, I., Durbin, J. E. & Levy, D. E. ( 1998; ). Differential viral induction of distinct interferon-alpha genes by positive feedback through interferon regulatory factor-7. EMBO J 17, 6660–6669.[CrossRef]
    [Google Scholar]
  32. Mathys, S., Schroeder, T., Ellwart, J., Koszinowski, U. H., Messerle, M. & Just, U. ( 2003; ). Dendritic cells under influence of mouse cytomegalovirus have a physiologic dual role: to initiate and to restrict T cell activation. J Infect Dis 187, 988–999.[CrossRef]
    [Google Scholar]
  33. Medzhitov, R. & Janeway, C. A. ( 2002; ). Decoding the patterns of self and nonself by the innate immune system. Science 296, 298–300.[CrossRef]
    [Google Scholar]
  34. Meyer, T., Begitt, A., Lodige, I., van Rossum, M. & Vinkemeier, U. ( 2002; ). Constitutive and IFN-γ-induced nuclear import of STAT1 proceed through independent pathways. EMBO J 21, 344–354.[CrossRef]
    [Google Scholar]
  35. Montag, C., Wagner, J., Gruska, I. & Hagemeier, C. ( 2006; ). Human cytomegalovirus blocks tumor necrosis factor alpha- and interleukin-1β-mediated NF-κB signaling. J Virol 80, 11686–11698.[CrossRef]
    [Google Scholar]
  36. Nogalski, M. T., Podduturi, J. P., Demeritt, I. B., Milford, L. E. & Yurochko, A. D. ( 2007; ). The human cytomegalovirus virion possesses an activated casein kinase II that allows for the rapid phosphorylation of the inhibitor of NF-κB, IκBα. J Virol 81, 5305–5314.[CrossRef]
    [Google Scholar]
  37. Novoa, R. R., Calderita, G., Arranz, R., Fontana, J., Granzow, H. & Risco, C. ( 2005; ). Virus factories: associations of cell organelles for viral replication and morphogenesis. Biol Cell 97, 147–172.[CrossRef]
    [Google Scholar]
  38. Paulus, C., Krauss, S. & Nevels, M. ( 2006; ). A human cytomegalovirus antagonist of type I IFN-dependent signal transducer and activator of transcription signaling. Proc Natl Acad Sci U S A 103, 3840–3845.[CrossRef]
    [Google Scholar]
  39. Perry, A. K., Chen, G., Zheng, D. H., Tang, H. & Cheng, G. H. ( 2005; ). The host type I interferon response to viral and bacterial infections. Cell Res 15, 407–422.[CrossRef]
    [Google Scholar]
  40. Pfeffer, K. ( 2003; ). Biological functions of tumor necrosis factor cytokines and their receptors. Cytokine Growth Factor Rev 14, 185–191.[CrossRef]
    [Google Scholar]
  41. Polic, B., Hengel, H., Krmpotic, A., Trgovcich, J., Pavic, I., Lucin, P., Jonjic, S. & Koszinowski, U. H. ( 1998; ). Hierarchical and redundant lymphocyte subset control precludes cytomegalovirus replication during latent infection. J Exp Med 188, 1047–1054.[CrossRef]
    [Google Scholar]
  42. Poole, E., King, C. A., Sinclair, J. H. & Alcami, A. ( 2006; ). The UL144 gene product of human cytomegalovirus activates NF-κB via a TRAF6-dependent mechanism. EMBO J 25, 4390–4399.[CrossRef]
    [Google Scholar]
  43. Presti, R. M., Popkin, D. L., Connick, M., Paetzold, S. & Virgin, H. W. ( 2001; ). Novel cell type-specific antiviral mechanism of interferon γ action in macrophages. J Exp Med 193, 483–496.[CrossRef]
    [Google Scholar]
  44. Sambucetti, L. C., Cherrington, J. M., Wilkinson, G. W. G. & Mocarski, E. S. ( 1989; ). NF-κB activation of the cytomegalovirus enhancer is mediated by a viral transactivator and by T-cell stimulation. EMBO J 8, 4251–4258.
    [Google Scholar]
  45. Sato, M., Hata, N., Asagiri, M., Nakaya, T., Taniguchi, T. & Tanaka, N. ( 1998; ). Positive feedback regulation of type I IFN genes by the IFN-inducible transcription factor IRF-7. FEBS Lett 441, 106–110.[CrossRef]
    [Google Scholar]
  46. Stetson, D. B. & Medzhitov, R. ( 2006; ). Recognition of cytosolic DNA activates an IRF3-dependent innate immune response. Immunity 24, 93–103.[CrossRef]
    [Google Scholar]
  47. Sun, B., Harrowe, G., Reinhard, C., Yoshihara, C., Chu, K. T. & Zhuo, S. Q. ( 2001; ). Modulation of human cytomegalovirus immediate-early gene enhancer by mitogen-activated protein kinase kinase kinase-1. J Cell Biochem 83, 563–573.[CrossRef]
    [Google Scholar]
  48. Tabeta, K., Georgel, P., Janssen, E., Du, X., Hoebe, K., Crozat, K., Mudd, S., Shamel, L., Sovath, S. & other authors ( 2004; ). Toll-like receptors 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus infection. Proc Natl Acad Sci U S A 101, 3516–3521.[CrossRef]
    [Google Scholar]
  49. Tabeta, K., Hoebe, K., Janssen, E. M., Du, X., Georgel, P., Crozat, K., Mudd, S., Mann, N., Sovath, S. & other authors ( 2006; ). The Unc93b1 mutation 3d disrupts exogenous antigen presentation and signaling via Toll-like receptors 3, 7 and 9. Nat Immunol 7, 156–164.
    [Google Scholar]
  50. Takaoka, A., Wang, Z., Choi, M. K., Yanai, H., Negishi, H., Ban, T., Lu, Y., Miyagishi, M., Kodama, T. & other authors ( 2007; ). DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 448, 501–505.[CrossRef]
    [Google Scholar]
  51. Taylor, R. T. & Bresnahan, W. A. ( 2006a; ). Human cytomegalovirus IE86 attenuates virus- and tumor necrosis factor alpha-induced NFκB-dependent gene expression. J Virol 80, 10763–10771.[CrossRef]
    [Google Scholar]
  52. Taylor, R. T. & Bresnahan, W. A. ( 2006b; ). Human cytomegalovirus immediate-early 2 protein IE86 blocks virus-induced chemokine expression. J Virol 80, 920–928.[CrossRef]
    [Google Scholar]
  53. Valchanova, R. S., Picard-Maureau, M., Budt, M. & Brune, W. ( 2006; ). Murine cytomegalovirus m142 and m143 are both required to block protein kinase R-mediated shutdown of protein synthesis. J Virol 80, 10181–10190.[CrossRef]
    [Google Scholar]
  54. Van Kuppeveld, F. J. M., Johansson, K. E., Galama, J. M. D., Kissing, J., Bolske, G., Van der Logt, J. T. M. & Melchers, W. J. G. ( 1994; ). Detection of mycoplasma contamination in cell cultures by a mycoplasma group-specific PCR. Appl Environ Microbiol 60, 149–152.
    [Google Scholar]
  55. Vilcek, J. ( 1984; ). Adverse effects of interferon in virus infections, autoimmune diseases and acquired immunodeficiency. Prog Med Virol 30, 62–77.
    [Google Scholar]
  56. Wagner, M., Jonjic, S., Koszinowski, U. H. & Messerle, M. ( 1999; ). Systematic excision of vector sequences from the BAC-cloned herpesvirus genome during virus reconstitution. J Virol 73, 7056–7060.
    [Google Scholar]
  57. Wang, X. & Sonenshein, G. E. ( 2005; ). Induction of the RelB NF-κB subunit by the cytomegalovirus IE1 protein is mediated via jun kinase and c-Jun/Fra-2 AP-1 complexes. J Virol 79, 95–105.[CrossRef]
    [Google Scholar]
  58. Wathelet, M. G., Lin, C. H., Parekh, B. S., Ronco, L. V., Howley, P. M. & Maniatis, T. ( 1998; ). Virus infection induces the assembly of coordinately activated transcription factors on the IFN-β enhancer in vivo. Mol Cell 1, 507–518.[CrossRef]
    [Google Scholar]
  59. Yurochko, A. D., Kowalik, T. F., Huong, S. M. & Huang, E. S. ( 1995; ). Human cytomegalovirus up-regulates NF-kappaB activity by transactivating the NF-kappaB p105/p50 and p65 promoters. J Virol 69, 5391–5400.
    [Google Scholar]
  60. Yurochko, A. D., Hwang, E. S., Rasmussen, L., Keay, S., Pereira, L. & Huang, E. S. ( 1997; ). The human cytomegalovirus UL55 (gB) and UL75 (gH) glycoprotein ligands initiate the rapid activation of Sp1 and NF-kappaB during infection. J Virol 71, 5051–5059.
    [Google Scholar]
  61. Zimmermann, A., Trilling, M., Wagner, M., Wilborn, M., Bubic, I., Jonjic, S., Koszinowski, U. & Hengel, H. ( 2005; ). A cytomegaloviral protein reveals a dual role for STAT2 in IFN-γ signaling and antiviral responses. J Exp Med 201, 1543–1553.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83538-0
Loading
/content/journal/jgv/10.1099/vir.0.83538-0
Loading

Data & Media loading...

Supplements

vol. , part 5, pp. 1131 - 1141

SeV replication induces IFN-β transcription and is not inhibited by MCMV coinfection

MCMV and the MCMV homologues of HCMV , and , do not contribute to IFN-β downregulation

MCMV homologues of HCMV , and , are not involved in downregulation of IRF3 activation and IκBα degradation

PCR primers and oligonucleotides used in this study [Single PDF file](350 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error