1887

Abstract

Compatible virus infection induces and suppresses host gene expression at the global level. These gene-expression changes are the molecular basis of symptom development and general stress and defence-like responses of the host. To assess transcriptional changes in soybean plants infected with soybean mosaic virus (SMV), the first soybean trifoliate leaf, immediately above the SMV-inoculated unifoliate leaf, was sampled at 7, 14 and 21 days post-inoculation (p.i.) and subjected to microarray analysis. The identified changes in gene expression in soybean leaves with SMV infection at different time points were associated with the observed symptom development. By using stringent selection criteria (≥2- or ≤−2-fold change and a value of ≤0.05), 273 (1.5 %) and 173 (0.9 %) transcripts were identified to be up- and downregulated, respectively, from 18 613 soybean cDNAs on the array. The expression levels of many transcripts encoding proteins for hormone metabolism, cell-wall biogenesis, chloroplast functions and photosynthesis were repressed at 14 days p.i. and were associated with the highest levels of viral RNA in the host cells. A number of transcripts corresponding to genes involved in defence were either downregulated or not affected at the early stages of infection, but upregulated at the late stages, indicating that the plant immune response is not activated until the late time points of infection. Such a delayed defence response may be critical for SMV to establish its systemic infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83531-0
2008-04-01
2019-11-21
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/4/1069.html?itemId=/content/journal/jgv/10.1099/vir.0.83531-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef]
    [Google Scholar]
  2. Aranda, M. A., Escaler, M., Wang, D. & Maule, A. J. ( 1996; ). Induction of HSP70 and polyubiquitin expression associated with plant virus replication. Proc Natl Acad Sci U S A 93, 15289–15293.[CrossRef]
    [Google Scholar]
  3. Arif, M. & Hassan, S. ( 2002; ). Evaluation of resistance in soybean germplasm to soybean mosaic potyvirus under field conditions. J Biol Sci 2, 601–604.[CrossRef]
    [Google Scholar]
  4. Atkinson, P. H. & Matthews, R. E. F. ( 1970; ). On the origin of dark green tissue in tobacco leaves infected with tobacco mosaic virus. Virology 40, 344–356.[CrossRef]
    [Google Scholar]
  5. Beffa, R. S., Hofer, R.-M., Thomas, M. & Meins, F., Jr ( 1996; ). Decreased susceptibility to virus disease of β-1,3-glucanase-deficient plants generated by antisense transformation. Plant Cell 8, 1001–1011.
    [Google Scholar]
  6. Benjamini, Y. & Hochberg, Y. ( 1995; ). Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57, 289–300.
    [Google Scholar]
  7. Cardinale, F., Meskiene, I., Ouaked, F. & Hirt, H. ( 2002; ). Convergence and divergence of stress-induced mitogen-activated protein kinase signaling pathways at the level of two distinct mitogen-activated protein kinases. Plant Cell 14, 703–711.
    [Google Scholar]
  8. Clarke, S. F., Guy, P. L., Burritt, D. J. & Jameson, P. E. ( 2002; ). Changes in the activities of antioxidant enzymes in response to virus infection and hormone treatment. Physiol Plant 114, 157–164.[CrossRef]
    [Google Scholar]
  9. Culver, J. N. & Padmanabhan, M. S. ( 2007; ). Virus-induced disease: altering host physiology one interaction at a time. Annu Rev Phytopathol 45, 221–243.[CrossRef]
    [Google Scholar]
  10. Culver, J. N., Lindbeck, A. G. C. & Dawson, W. O. ( 1991; ). Virus-host interactions: induction of chlorotic and necrotic responses in plants by tobamoviruses. Annu Rev Phytopathol 29, 193–217.[CrossRef]
    [Google Scholar]
  11. Dardick, C. ( 2007; ). Comparative expression profiling of Nicotiana benthamiana leaves systemically infected with three fruit tree viruses. Mol Plant Microbe Interact 20, 1004–1017.[CrossRef]
    [Google Scholar]
  12. Draghici, S., Khatri, P., Martins, R. P., Ostermeier, C. & Krawetz, S. A. ( 2003; ). Global functional profiling of gene expression. Genomics 81, 98–104.[CrossRef]
    [Google Scholar]
  13. Espinoza, C., Vega, A., Medina, C., Schlauch, K., Cramer, G. & Arce-Johnson, P. ( 2007; ). Gene expression associated with compatible viral diseases in grapevine cultivars. Funct Integr Genomics 7, 95–110.[CrossRef]
    [Google Scholar]
  14. Garcia-Brugger, A. G., Lamotte, O., Vandelle, E., Bourque, S., Lecourieux, D., Poinssot, B., Wendehenne, D. & Pugin, A. ( 2006; ). Early signaling events induced by elicitors of plant defenses. Mol Plant Microbe Interact 19, 711–724.[CrossRef]
    [Google Scholar]
  15. Golem, S. & Culver, J. N. ( 2003; ). Tobacco mosaic virus induced alterations in the gene expression profile of Arabidopsis thaliana. Mol Plant Microbe Interact 16, 681–688.[CrossRef]
    [Google Scholar]
  16. Herbers, K., Tacke, E., Hazirezaei, M., Krause, K. P., Melzer, M., Rohde, W. & Sonnewald, U. ( 1997; ). Expression of a luteoviral movement protein in transgenic plants leads to carbohydrate accumulation and reduced photosynthetic capacity in source leaves. Plant J 12, 1045–1056.[CrossRef]
    [Google Scholar]
  17. Hernández, J. A., Rubio, M., Olmos, E., Ros-Barceló, A. & Martínez-Gómez, P. ( 2004; ). Oxidative stress induced by long-term plum pox virus infection in peach (Prunus persica). Physiol Plant 122, 486–495.[CrossRef]
    [Google Scholar]
  18. Huckelhoven, R. ( 2007; ). Cell wall-associated mechanisms of disease resistance and susceptibility. Annu Rev Phytopathol 45, 101–127.[CrossRef]
    [Google Scholar]
  19. Ishihara, T., Sakurai, N., Sekine, K. T., Hase, S., Ikegami, M., Shibata, D. & Takahashi, H. ( 2004; ). Comparative analysis of expressed sequence tags in resistance and susceptible ecotypes of Arabidopsis thaliana infected with cucumber mosaic virus. Plant Cell Physiol 45, 470–480.[CrossRef]
    [Google Scholar]
  20. Itoh, H., Tatsumi, T., Sakamoto, T., Otomo, K., Toyomasu, T., Kitano, H., Ashikari, M., Ichihara, S. & Matsuoka, M. ( 2004; ). A rice semi-dwarf gene, Tan-Ginbozu (D35), encodes the gibberellin biosynthesis enzyme, ent-kaurene oxidase. Plant Mol Biol 54, 533–547.[CrossRef]
    [Google Scholar]
  21. Jacobs, A. K., Lipka, V., Burton, R. A., Panstruga, R., Strizhov, N., Lefert, P. S. & Fincher, G. B. ( 2003; ). An Arabidopsis callose synthase, GSL5, is required for wound and papillary callose formation. Plant Cell 15, 2503–2513.[CrossRef]
    [Google Scholar]
  22. Jayaram, C. H., Hill, J. H. & Miller, W. A. ( 1992; ). Complete nucleotide sequences of two soybean mosaic virus strains differentiated by response of soybean containing the Rsv resistance gene. J Gen Virol 73, 2067–2077.[CrossRef]
    [Google Scholar]
  23. Kolomiets, M. V., Chen, H., Gladon, R. J., Braun, E. J. & Hannapel, D. J. ( 2000; ). A leaf lipoxygenase of potato induced specifically by pathogen infection. Plant Physiol 124, 1121–1130.[CrossRef]
    [Google Scholar]
  24. Liao, L., Chen, P., Buss, G. R., Yang, Q. & Tolin, S. A. ( 2002; ). Inheritance and allelism of resistance to soybean mosaic virus in Zao18 soybean from China. J Hered 93, 447–452.[CrossRef]
    [Google Scholar]
  25. Marathe, R., Guan, Z., Anandalakshmi, R., Zhao, H. & Dinesh-Kumar, S. P. ( 2004; ). Study of Arabidopsis thaliana resistome in response to cucumber mosaic virus infection using whole genome microarray. Plant Mol Biol 55, 501–520.[CrossRef]
    [Google Scholar]
  26. Maule, A. J., Escaler, M. & Aranda, M. A. ( 2000; ). Programmed responses to virus replication in plants. Mol Plant Pathol 1, 9–15.[CrossRef]
    [Google Scholar]
  27. Maule, A., Leh, V. & Lederer, C. ( 2002; ). The dialogue between viruses and hosts in compatible interactions. Curr Opin Plant Biol 5, 279–284.[CrossRef]
    [Google Scholar]
  28. Milioni, D., Sado, P. E., Stacey, N. J., Domingo, C., Roberts, K. & McCann, M. C. ( 2001; ). Differential expression of cell-wall-related genes during the formation of tracheary elements in the Zinnia mesophyll cell system. Plant Mol Biol 47, 221–238.[CrossRef]
    [Google Scholar]
  29. Moore, C. J. & MacDiarmid, R. M. ( 2006; ). Dark green islands: the phenomenon. In Natural Resistance Mechanisms of Plants to Viruses, pp. 187–209. Edited by G. Loebenstein & J. P. Carr. Dordrecht: Springer.
  30. Moy, P., Qutob, D., Chapman, B. P., Atkinson, I. & Gijzen, M. ( 2004; ). Patterns of gene expression upon infection of soybean plants by Phytophthora sojae. Mol Plant Microbe Interact 17, 1051–1062.[CrossRef]
    [Google Scholar]
  31. Nishimura, M. T., Stein, M., Hou, B. H., Vogel, J. P., Edwards, H. & Somerville, S. C. ( 2003; ). Loss of callose synthase results in salicylic acid dependent disease resistance. Science 301, 969–972.[CrossRef]
    [Google Scholar]
  32. Padmanabhan, M. S., Goregaoker, S. P., Golem, S., Shiferaw, H. & Culver, J. N. ( 2005; ). Interaction of the tobacco mosaic virus replicase protein with the Aux/IAA protein PAP1/IAA26 is associated with disease development. J Virol 79, 2549–2558.[CrossRef]
    [Google Scholar]
  33. Padmanabhan, M. S., Shiferaw, H. & Culver, J. N. ( 2006; ). The Tobacco mosaic virus replicase protein disrupts the localization and function of interacting Aux/IAA proteins. Mol Plant Microbe Interact 19, 864–873.[CrossRef]
    [Google Scholar]
  34. Pompe-Novak, M., Gruden, K., Baebler, S., Krecic-Stres, H., Kovac, M., Jongsma, M. & Ravnikar, M. ( 2005; ). Potato virus Y induced changes in the gene expression of potato (Solanum tuberosum L.). Physiol Mol Plant Pathol 67, 237–247.[CrossRef]
    [Google Scholar]
  35. Rubin, G. M., Yandell, M. D., Wortman, J. R., Gabor Miklos, G. L., Nelson, C. R., Hariharan, I. K., Fortini, M. E., Li, P. W., Apweiler, R. & other authors ( 2000; ). Comparative genomics of the eukaryotes. Science 287, 2204–2215.[CrossRef]
    [Google Scholar]
  36. Sandermann, H. ( 2000; ). Active oxygen species as mediators of plant immunity: three case studies. Biol Chem 381, 649–653.
    [Google Scholar]
  37. Senthil, G., Liu, H., Puram, V. G., Clark, A., Stromberg, A. & Goodin, M. M. ( 2005; ). Specific and common changes in Nicotiana benthamiana gene expression in response to infection by enveloped viruses. J Gen Virol 86, 2615–2625.[CrossRef]
    [Google Scholar]
  38. Shimizu, T., Satoh, K., Kikuchi, S. & Omura, T. ( 2007; ). The repression of cell wall- and plastid-related genes and the induction of defense-related genes in rice plants infected with rice dwarf virus. Mol Plant Microbe Interact 20, 247–254.[CrossRef]
    [Google Scholar]
  39. Storey, J. D. & Tibshirani, R. ( 2003; ). Statistical significance for genomewide studies. Proc Natl Acad Sci U S A 100, 9440–9445.[CrossRef]
    [Google Scholar]
  40. Taniguchi, M., Miura, K., Iwao, H. & Yamanaka, S. ( 2001; ). Quantitative assessment of DNA microarrays – comparison with northern blot analyses. Genomics 71, 34–39.[CrossRef]
    [Google Scholar]
  41. Técsi, L. I., Maule, A. J., Smith, A. M. & Leegood, R. C. ( 1994; ). Complex, localized changes in CO2 assimilation and starch content associated with the susceptible interaction between cucumber mosaic virus and a cucurbit host. Plant J 5, 837–847.[CrossRef]
    [Google Scholar]
  42. Técsi, L. I., Smith, A. M., Maule, A. J. & Leegood, R. C. ( 1996; ). A spatial analysis of physiological changes associated with infection of cotyledons of marrow plants with cucumber mosaic virus. Plant Physiol 111, 975–985.
    [Google Scholar]
  43. Thibaud-Nissen, F., Shealy, R. T., Khanna, A. & Voldkin, L. O. ( 2003; ). Clustering of microarray data reveals transcript patterns associated with somatic embryogenesis in soybean. Plant Physiol 132, 118–136.[CrossRef]
    [Google Scholar]
  44. Ueki, S. & Citovsky, V. ( 2005; ). Identification of an interactor of cadmium ion-induced glycine-rich protein involved in regulation of callose levels in plant vasculature. Proc Natl Acad Sci U S A 102, 12089–12094.[CrossRef]
    [Google Scholar]
  45. von Schaewen, A., Stitt, M., Schmidt, R., Sonnewald, U. & Willmitzer, L. ( 1990; ). Expression of a yeast-derived invertase in the cell wall of tobacco and Arabidopsis plants leads to accumulation of carbohydrate and inhibition of photosynthesis and strongly influences growth and phenotype of transgenic tobacco plants. EMBO J 9, 3033–3044.
    [Google Scholar]
  46. Whitham, S. A. & Wang, Y. ( 2004; ). Roles for host factors in plant viral pathogenicity. Curr Opin Plant Biol 7, 365–371.[CrossRef]
    [Google Scholar]
  47. Whitham, S. A., Quan, S., Chang, H. S., Cooper, B., Estes, B., Zhu, T., Wang, X. & Hou, Y. M. ( 2003; ). Diverse RNA viruses elicit the expression of common sets of genes in susceptible Arabidopsis thaliana plants. Plant J 33, 271–283.[CrossRef]
    [Google Scholar]
  48. Whitham, S. A., Yang, C. & Goodin, M. M. ( 2006; ). Global impact: elucidating plant responses to viral infection. Mol Plant Microbe Interact 19, 1207–1215.[CrossRef]
    [Google Scholar]
  49. Yang, C., Guo, R., Jie, F., Nettleton, D., Peng, J., Carr, T., Yeakley, J. M., Fan, J. B. & Whitham, S. A. ( 2007; ). Spatial analysis of Arabidopsis thaliana gene expression in response to turnip mosaic virus infection. Mol Plant Microbe Interact 20, 358–370.[CrossRef]
    [Google Scholar]
  50. Yao, B., Rakhade, S. N., Li, Q., Ahmed, S., Krauss, R., Draghici, S. & Loeb, J. A. ( 2004; ). Accuracy of cDNA microarray methods to detect small gene expression changes induced by neuregulin on breast epithelial cells. BMC Bioinformatics 5, 99 [CrossRef]
    [Google Scholar]
  51. Zhu, S., Gao, F., Cao, X., Chen, M., Ye, G., Wei, C. & Li, Y. ( 2005; ). The rice dwarf virus P2 protein interacts with ent-kaurene oxidases in vivo, leading to reduced biosynthesis of gibberellins and rice dwarf symptoms. Plant Physiol 139, 1935–1945.[CrossRef]
    [Google Scholar]
  52. Zhuang, B. C., Xu, B. & Liao, L. ( 1993; ). Change of superoxide dismutase, peroxidase and storage protein in soybean leaves after inoculation with soybean mosaic virus. Acta Phytopathol Sin 23, 261–265.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83531-0
Loading
/content/journal/jgv/10.1099/vir.0.83531-0
Loading

Data & Media loading...

Supplements

Confirmation of microarray data by Northern hybridizations [ PDF] (40 KB)

PDF

Primers used for RT-PCR to generate probes for Northern hybridizations [ PDF] (54 KB)

PDF

Expression ratios of soybean transcripts differentially regulated by SMV infection belonging to six distinct cluster groups [ Excel file] (157 KB)

EXCEL

Expression ratios of transcripts belonging to different functional categories are significantly induced in SMV-infected soybean leaf tissues [ Excel file] (128 KB)

EXCEL

Expression ratios of transcripts belonging to different functional categories that are significantly repressed in SMV-infected leaf tissues [ Excel file] (92 KB)

EXCEL

Cross-comparison of transcriptional profiles in SMV-infected leaf tissues and in plants infected by other positive-sense, single-stranded RNA viruses [ Excel file] (83 KB)

EXCEL

cited in Supplementary Tables S2–S5 [ PDF] (33 KB)

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error