1887

Abstract

Adenovirus is among the preferred vectors for gene therapy because of its superior gene-transfer efficiency. However, upon systemic administration, adenovirus is preferentially sequestered by the liver, resulting in reduced adenovirus-mediated transgene expression in targeted tissues. In the liver, Kupffer cells are responsible for adenovirus degradation and contribute to the inflammatory response. As scavenger receptors present on Kupffer cells are responsible for the elimination of blood-borne pathogens, we investigated the possible implication of these receptors in the clearance of the adenovirus vector. Polyinosinic acid [poly(I)], a scavenger receptor A ligand, was analysed for its capability to inhibit adenovirus uptake specifically in macrophages. In studies, the addition of poly(I) before virus infection resulted in a specific inhibition of adenovirus-induced gene expression in a J774 macrophage cell line and in primary Kupffer cells. In experiments, pre-administration of poly(I) caused a 10-fold transient increase in the number of adenovirus particles circulating in the blood. As a consequence, transgene expression levels measured in different tissues were enhanced (by 5- to 15-fold) compared with those in animals that did not receive poly(I). Finally, necrosis of Kupffer cells, which normally occurs as a consequence of systemic adenovirus administration, was prevented by the use of poly(I). No toxicity, as measured by liver-enzyme levels, was observed after poly(I) treatment. From our data, we conclude that poly(I) can prevent adenovirus sequestration by liver macrophages. These results imply that, by inhibiting adenovirus uptake by Kupffer cells, it is possible to reduce the dose of the viral vector to diminish the liver-toxicity effect and to improve the level of transgene expression in target tissues. In systemic gene-therapy applications, this will have great impact on the development of targeted adenoviral vectors.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83495-0
2008-05-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/5/1097.html?itemId=/content/journal/jgv/10.1099/vir.0.83495-0&mimeType=html&fmt=ahah

References

  1. Akiyama M., Thorne S., Kirn D., Roelvink P. W., Einfeld D. A., King C. R., Wickham T. J. 2004; Ablating CAR and integrin binding in adenovirus vectors reduces nontarget organ transduction and permits sustained bloodstream persistence following intraperitoneal administration. Mol Ther 9:218–230
    [Google Scholar]
  2. Alemany R., Curiel D. T. 2001; CAR-binding ablation does not change biodistribution and toxicity of adenoviral vectors. Gene Ther 8:1347–1353 [CrossRef]
    [Google Scholar]
  3. Alemany R., Suzuki K., Curiel D. T. 2000; Blood clearance rates of adenovirus type 5 in mice. J Gen Virol 81:2605–2609
    [Google Scholar]
  4. Bangari D. S., Mittal S. K. 2006; Current strategies and future directions for eluding adenoviral vector immunity. Curr Gene Ther 6:215–226 [CrossRef]
    [Google Scholar]
  5. Bayo-Puxan N., Cascallo M., Gros A., Huch M., Fillat C., Alemany R. 2006; Role of the putative heparan sulfate glycosaminoglycan-binding site of the adenovirus type 5 fiber shaft on liver detargeting and knob-mediated retargeting. J Gen Virol 87:2487–2495 [CrossRef]
    [Google Scholar]
  6. Becker T. C., Noel R. J., Coats W. S., Gomez-Foix A. M., Alam T., Gerard R. D., Newgard C. B. 1994; Use of recombinant adenovirus for metabolic engineering of mammalian cells. Methods Cell Biol 43:161–189
    [Google Scholar]
  7. Bergelson J. M., Cunningham J. A., Droguett G., Kurt-Jones E. A., Krithivas A., Hong J. S., Horwitz M. S., Crowell R. L., Finberg R. W. 1997; Isolation of a common receptor for coxsackie B viruses and adenoviruses 2 and 5. Science 275:1320–1323 [CrossRef]
    [Google Scholar]
  8. Breidenbach M., Rein D. T., Wang M., Nettelbeck D. M., Hemminki A., Ulasov I., Rivera A. R., Everts M., Alvarez R. D. other authors 2004; Genetic replacement of the adenovirus shaft fiber reduces liver tropism in ovarian cancer gene therapy. Hum Gene Ther 15:509–518 [CrossRef]
    [Google Scholar]
  9. Brunetti-Pierri N., Palmer D. J., Beaudet A. L., Carey K. D., Finegold M., Ng P. 2004; Acute toxicity after high-dose systemic injection of helper-dependent adenoviral vectors into nonhuman primates. Hum Gene Ther 15:35–46 [CrossRef]
    [Google Scholar]
  10. Choi C. F., Tsang P. T., Huang J. D., Chan E. Y., Ko W. H., Fong W. P., Ng D. K. 2004; Synthesis and in vitro photodynamic activity of new hexadeca-carboxy phthalocyanines. Chem Commun (Camb) 2236–2237
    [Google Scholar]
  11. Cotter M. J., Muruve D. A. 2005; The induction of inflammation by adenovirus vectors used for gene therapy. Front Biosci 10:1098–1105 [CrossRef]
    [Google Scholar]
  12. Croyle M. A., Yu Q. C., Wilson J. M. 2000; Development of a rapid method for the PEGylation of adenoviruses with enhanced transduction and improved stability under harsh storage conditions. Hum Gene Ther 11:1713–1722 [CrossRef]
    [Google Scholar]
  13. Croyle M. A., Chirmule N., Zhang Y., Wilson J. M. 2002; PEGylation of E1-deleted adenovirus vectors allows significant gene expression on readministration to liver. Hum Gene Ther 13:1887–1900 [CrossRef]
    [Google Scholar]
  14. Dechecchi M. C., Tamanini A., Bonizzato A., Cabrini G. 2000; Heparan sulfate glycosaminoglycans are involved in adenovirus type 5 and 2-host cell interactions. Virology 268:382–390 [CrossRef]
    [Google Scholar]
  15. Di Paolo N. C., Kalyuzhniy O., Shayakhmetov D. M. 2007; Fiber shaft-chimeric adenovirus vectors lacking the KKTK motif efficiently infect liver cells in vivo. J Virol 81:12249–12259 [CrossRef]
    [Google Scholar]
  16. Fechner H., Haack A., Wang H., Wang X., Eizema K., Pauschinger M., Schoemaker R., Veghel R., Houtsmuller A. other authors 1999; Expression of coxsackie adenovirus receptor and alphav-integrin does not correlate with adenovector targeting in vivo indicating anatomical vector barriers. Gene Ther 6:1520–1535 [CrossRef]
    [Google Scholar]
  17. Fisher K. D., Stallwood Y., Green N. K., Ulbrich K., Mautner V., Seymour L. W. 2001; Polymer-coated adenovirus permits efficient retargeting and evades neutralising antibodies. Gene Ther 8:341–348 [CrossRef]
    [Google Scholar]
  18. Furumoto K., Nagayama S., Ogawara K., Takakura Y., Hashida M., Higaki K., Kimura T. 2004; Hepatic uptake of negatively charged particles in rats: possible involvement of serum proteins in recognition by scavenger receptor. J Control Release 97:133–141 [CrossRef]
    [Google Scholar]
  19. Glasgow J. N., Everts M., Curiel D. T. 2006; Transductional targeting of adenovirus vectors for gene therapy. Cancer Gene Ther 13:830–844 [CrossRef]
    [Google Scholar]
  20. Gordon S. 2002; Pattern recognition receptors: doubling up for the innate immune response. Cell 111:927–930 [CrossRef]
    [Google Scholar]
  21. Gough P. J., Gordon S. 2000; The role of scavenger receptors in the innate immune system. Microbes Infect 2:305–311 [CrossRef]
    [Google Scholar]
  22. Green N. K., Herbert C. W., Hale S. J., Hale A. B., Mautner V., Harkins R., Hermiston T., Ulbrich K., Fisher K. D., Seymour L. W. 2004; Extended plasma circulation time and decreased toxicity of polymer-coated adenovirus. Gene Ther 11:1256–1263 [CrossRef]
    [Google Scholar]
  23. Haisma H. J., Grill J., Curiel D. T., Hoogeland S., van Beusechem V. W., Pinedo H. M., Gerritsen W. R. 2000; Targeting of adenoviral vectors through a bispecific single-chain antibody. Cancer Gene Ther 7:901–904 [CrossRef]
    [Google Scholar]
  24. Hamblin M. R., Miller J. L., Ortel B. 2000; Scavenger-receptor targeted photodynamic therapy. Photochem Photobiol 72:533–540 [CrossRef]
    [Google Scholar]
  25. He T. C., Zhou S., da Costa L. T., Yu J., Kinzler K. W., Vogelstein B. 1998; A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci U S A 95:2509–2514 [CrossRef]
    [Google Scholar]
  26. Hodges B. L., Taylor K. M., Chu Q., Scull S. E., Serriello R. G., Anderson S. C., Wang F., Scheule R. K. 2005; Local delivery of a viral vector mitigates neutralization by antiviral antibodies and results in efficient transduction of rabbit liver. Mol Ther 12:1043–1051 [CrossRef]
    [Google Scholar]
  27. Kamps J. A., Morselt H. W., Swart P. J., Meijer D. K., Scherphof G. L. 1997; Massive targeting of liposomes, surface-modified with anionized albumins, to hepatic endothelial cells. Proc Natl Acad Sci U S A 94:11681–11685 [CrossRef]
    [Google Scholar]
  28. Koizumi N., Mizuguchi H., Sakurai F., Yamaguchi T., Watanabe Y., Hayakawa T. 2003; Reduction of natural adenovirus tropism to mouse liver by fiber-shaft exchange in combination with both CAR- and alphav integrin-binding ablation. J Virol 77:13062–13072 [CrossRef]
    [Google Scholar]
  29. Krieger M. 1997; The other side of scavenger receptors: pattern recognition for host defense. Curr Opin Lipidol 8:275–280 [CrossRef]
    [Google Scholar]
  30. Krieger M., Herz J. 1994; Structures and functions of multiligand lipoprotein receptors: macrophage scavenger receptors and LDL receptor-related protein (LRP. Annu Rev Biochem 63:601–637 [CrossRef]
    [Google Scholar]
  31. Lanciotti J., Song A., Doukas J., Sosnowski B., Pierce G., Gregory R., Wadsworth S., O'Riordan C. 2003; Targeting adenoviral vectors using heterofunctional polyethylene glycol FGF2 conjugates. Mol Ther 8:99–107 [CrossRef]
    [Google Scholar]
  32. Lieber A., He C. Y., Meuse L., Schowalter D., Kirillova I., Winther B., Kay M. A. 1997; The role of Kupffer cell activation and viral gene expression in early liver toxicity after infusion of recombinant adenovirus vectors. J Virol 71:8798–8807
    [Google Scholar]
  33. Lievens J., Snoeys J., Vekemans K., Van Linthout S., de Zanger R., Collen D., Wisse E., De Geest B. 2004; The size of sinusoidal fenestrae is a critical determinant of hepatocyte transduction after adenoviral gene transfer. Gene Ther 11:1523–1531 [CrossRef]
    [Google Scholar]
  34. Liu Q., Zaiss A. K., Colarusso P., Patel K., Haljan G., Wickham T. J., Muruve D. A. 2003; The role of capsid-endothelial interactions in the innate immune response to adenovirus vectors. Hum Gene Ther 14:627–643 [CrossRef]
    [Google Scholar]
  35. Manickan E., Smith J. S., Tian J., Eggerman T. L., Lozier J. N., Muller J., Byrnes A. P. 2006; Rapid Kupffer cell death after intravenous injection of adenovirus vectors. Mol Ther 13:108–117 [CrossRef]
    [Google Scholar]
  36. Martin K., Brie A., Saulnier P., Perricaudet M., Yeh P., Vigne E. 2003; Simultaneous CAR- and alpha V integrin-binding ablation fails to reduce Ad5 liver tropism. Mol Ther 8:485–494 [CrossRef]
    [Google Scholar]
  37. Mei Y. F., Wadell G. 1995; Molecular determinants of adenovirus tropism. Curr Top Microbiol Immunol 199:213–228
    [Google Scholar]
  38. Mizuguchi H., Hayakawa T. 2004; Targeted adenovirus vectors. Hum Gene Ther 15:1034–1044 [CrossRef]
    [Google Scholar]
  39. Mukhopadhyay S., Gordon S. 2004; The role of scavenger receptors in pathogen recognition and innate immunity. Immunobiology 209:39–49 [CrossRef]
    [Google Scholar]
  40. Muruve D. A. 2004; The innate immune response to adenovirus vectors. Hum Gene Ther 15:1157–1166 [CrossRef]
    [Google Scholar]
  41. Muruve D. A., Barnes M. J., Stillman I. E., Libermann T. A. 1999; Adenoviral gene therapy leads to rapid induction of multiple chemokines and acute neutrophil-dependent hepatic injury in vivo. Hum Gene Ther 10:965–976 [CrossRef]
    [Google Scholar]
  42. Nakamura T., Sato K., Hamada H. 2003; Reduction of natural adenovirus tropism to the liver by both ablation of fiber-coxsackievirus and adenovirus receptor interaction and use of replaceable short fiber. J Virol 77:2512–2521 [CrossRef]
    [Google Scholar]
  43. Nicklin S. A., Wu E., Nemerow G. R., Baker A. H. 2005; The influence of adenovirus fiber structure and function on vector development for gene therapy. Mol Ther 12:384–393 [CrossRef]
    [Google Scholar]
  44. Nicol C. G., Graham D., Miller W. H., White S. J., Smith T. A., Nicklin S. A., Stevenson S. C., Baker A. H. 2004; Effect of adenovirus serotype 5 fiber and penton modifications on in vivo tropism in rats. Mol Ther 10:344–354 [CrossRef]
    [Google Scholar]
  45. Ogawara K., Rots M. G., Kok R. J., Moorlag H. E., Van Loenen A. M., Meijer D. K., Haisma H. J., Molema G. 2004; A novel strategy to modify adenovirus tropism and enhance transgene delivery to activated vascular endothelial cells in vitro and in vivo. Hum Gene Ther 15:433–443 [CrossRef]
    [Google Scholar]
  46. O'Riordan C. R., Lachapelle A., Delgado C., Parkes V., Wadsworth S. C., Smith A. E., Francis G. E. 1999; PEGylation of adenovirus with retention of infectivity and protection from neutralizing antibody in vitro and in vivo. Hum Gene Ther 10:1349–1358 [CrossRef]
    [Google Scholar]
  47. Park B. H., Lee J. H., Jeong J. S., Rha S. H., Kim S. E., Kim J. S., Kim J. M., Hwang T. H. 2005; Vascular administration of adenoviral vector soaked in absorbable gelatin sponge particles (GSP) prolongs the transgene expression in hepatocytes. Cancer Gene Ther 12:116–121 [CrossRef]
    [Google Scholar]
  48. Peiser L., Mukhopadhyay S., Gordon S. 2002; Scavenger receptors in innate immunity. Curr Opin Immunol 14:123–128 [CrossRef]
    [Google Scholar]
  49. Platt N., Gordon S. 2001; Is the class A macrophage scavenger receptor (SR-A) multifunctional? – The mouse's tale. J Clin Invest 108:649–654 [CrossRef]
    [Google Scholar]
  50. Platt N., Haworth R., Darley L., Gordon S. 2002; The many roles of the class A macrophage scavenger receptor. Int Rev Cytol 212:1–40
    [Google Scholar]
  51. Rhainds D., Falstrault L., Tremblay C., Brissette L. 1999; Uptake and fate of class B scavenger receptor ligands in HepG2 cells. Eur J Biochem 261:227–235 [CrossRef]
    [Google Scholar]
  52. Schiedner G., Bloch W., Hertel S., Johnston M., Molojavyi A., Dries V., Varga G., van Rooijen N., Kochanek S. 2003a; A hemodynamic response to intravenous adenovirus vector particles is caused by systemic Kupffer cell-mediated activation of endothelial cells. Hum Gene Ther 14:1631–1641 [CrossRef]
    [Google Scholar]
  53. Schiedner G., Hertel S., Johnston M., Dries V., van Rooijen N., Kochanek S. 2003b; Selective depletion or blockade of Kupffer cells leads to enhanced and prolonged hepatic transgene expression using high-capacity adenoviral vectors. Mol Ther 7:35–43 [CrossRef]
    [Google Scholar]
  54. Shayakhmetov D. M., Li Z. Y., Ni S., Lieber A. 2004; Analysis of adenovirus sequestration in the liver, transduction of hepatic cells, and innate toxicity after injection of fiber-modified vectors. J Virol 78:5368–5381 [CrossRef]
    [Google Scholar]
  55. Shayakhmetov D. M., Gaggar A., Ni S., Li Z. Y., Lieber A. 2005; Adenovirus binding to blood factors results in liver cell infection and hepatotoxicity. J Virol 79:7478–7491 [CrossRef]
    [Google Scholar]
  56. Shirai H., Murakami T., Yamada Y., Doi T., Hamakubo T., Kodama T. 1999; Structure and function of type I and II macrophage scavenger receptors. Mech Ageing Dev 111:107–121 [CrossRef]
    [Google Scholar]
  57. Smith T., Idamakanti N., Kylefjord H., Rollence M., King L., Kaloss M., Kaleko M., Stevenson S. C. 2002; In vivo hepatic adenoviral gene delivery occurs independently of the coxsackievirus-adenovirus receptor. Mol Ther 5:770–779 [CrossRef]
    [Google Scholar]
  58. Smith T. A., Idamakanti N., Marshall-Neff J., Rollence M. L., Wright P., Kaloss M., King L., Mech C., Dinges L. other authors 2003a; Receptor interactions involved in adenoviral-mediated gene delivery after systemic administration in non-human primates. Hum Gene Ther 14:1595–1604 [CrossRef]
    [Google Scholar]
  59. Smith T. A., Idamakanti N., Rollence M. L., Marshall-Neff J., Kim J., Mulgrew K., Nemerow G. R., Kaleko M., Stevenson S. C. 2003b; Adenovirus serotype 5 fiber shaft influences in vivo gene transfer in mice. Hum Gene Ther 14:777–787 [CrossRef]
    [Google Scholar]
  60. Smith J. S., Xu Z., Byrnes A. P. 2008; A quantitative assay for measuring clearance of adenovirus vectors by Kupffer cells. J Virol Methods 147:54–60 [CrossRef]
    [Google Scholar]
  61. Stone D., Liu Y., Shayakhmetov D., Li Z. Y., Ni S., Lieber A. 2007; Adenovirus-platelet interaction in blood causes virus sequestration to the reticuloendothelial system of the liver. J Virol 81:4866–4871 [CrossRef]
    [Google Scholar]
  62. Swart P. J., Harmsen M. C., Kuipers M. E., Van Dijk A. A., Van Der Strate B. W., Van Berkel P. H., Nuijens J. H., Smit C., Witvrouw M. other authors 1999; Charge modification of plasma and milk proteins results in antiviral active compounds. J Pept Sci 5:563–576 [CrossRef]
    [Google Scholar]
  63. Tao N., Gao G. P., Parr M., Johnston J., Baradet T., Wilson J. M., Barsoum J., Fawell S. E. 2001; Sequestration of adenoviral vector by Kupffer cells leads to a nonlinear dose response of transduction in liver. Mol Ther 3:28–35 [CrossRef]
    [Google Scholar]
  64. Taylor P. R., Martinez-Pomares L., Stacey M., Lin H. H., Brown G. D., Gordon S. 2005; Macrophage receptors and immune recognition. Annu Rev Immunol 23:901–944 [CrossRef]
    [Google Scholar]
  65. Tomko R. P., Xu R., Philipson L. 1997; HCAR and MCAR: the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses. Proc Natl Acad Sci U S A 94:3352–3356 [CrossRef]
    [Google Scholar]
  66. Vigne E., Dedieu J. F., Brie A., Gillardeaux A., Briot D., Benihoud K., Latta-Mahieu M., Saulnier P., Perricaudet M., Yeh P. 2003; Genetic manipulations of adenovirus type 5 fiber resulting in liver tropism attenuation. Gene Ther 10:153–162 [CrossRef]
    [Google Scholar]
  67. Wickham T. J., Mathias P., Cheresh D. A., Nemerow G. R. 1993; Integrins α v β 3 and α v β 5 promote adenovirus internalization but not virus attachment. Cell 73:309–319 [CrossRef]
    [Google Scholar]
  68. Wolff G., Worgall S., van Rooijen N., Song W. R., Harvey B. G., Crystal R. G. 1997; Enhancement of in vivo adenovirus-mediated gene transfer and expression by prior depletion of tissue macrophages in the target organ. J Virol 71:624–629
    [Google Scholar]
  69. Yamada Y., Doi T., Hamakubo T., Kodama T. 1998; Scavenger receptor family proteins: roles for atherosclerosis, host defence and disorders of the central nervous system. Cell Mol Life Sci 54:628–640 [CrossRef]
    [Google Scholar]
  70. Zhang Y., Chirmule N., Gao G. P., Qian R., Croyle M., Joshi B., Tazelaar J., Wilson J. M. 2001; Acute cytokine response to systemic adenoviral vectors in mice is mediated by dendritic cells and macrophages. Mol Ther 3:697–707 [CrossRef]
    [Google Scholar]
  71. Ziegler R. J., Li C., Cherry M., Zhu Y., Hempel D., van Rooijen N., Ioannou Y. A., Desnick R. J., Goldberg M. A. other authors 2002; Correction of the nonlinear dose response improves the viability of adenoviral vectors for gene therapy of Fabry disease. Hum Gene Ther 13:935–945 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83495-0
Loading
/content/journal/jgv/10.1099/vir.0.83495-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error