Analysis of gene content in sweet potato chlorotic stunt virus RNA1 reveals the presence of the p22 RNA silencing suppressor in only a few isolates: implications for viral evolution and synergism Free

Abstract

(genus ) belongs to the family , members of which have a conserved overall genomic organization but are variable in gene content. In the bipartite criniviruses, heterogeneity is pronounced in the 3′-proximal region of RNA1, which in sweet potato chlorotic stuat virus (SPCSV) encodes two novel proteins, RNase3 (RNase III endonuclease) and p22 (RNA silencing suppressor). This study showed that two Ugandan SPCSV isolates contained the gene, in contrast to three isolates of the East African strain from Tanzania and Peru and an isolate of the West African strain from Israel, which were missing a 767 nt fragment of RNA1 that included the gene. Regardless of the presence of p22, all tested SPCSV isolates acted synergistically with potyvirus sweet potato feathery mottle virus (SPFMV; genus , family ) in co-infected sweetpotato plants (), which greatly enhanced SPFMV titres and caused severe sweetpotato virus disease (SPVD). Therefore, the results indicate that any efforts to engineer pathogen-derived RNA silencing-based resistance to SPCSV and SPVD in sweetpotato should not rely on as the transgene. The data from this study demonstrate that isolates of this virus species can vary in the genes encoding RNA silencing suppressor proteins. This study also provides the first example of intraspecific variability in gene content of the family and may be a new example of the recombination-mediated gene gain that is characteristic of virus evolution in this virus family.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83471-0
2008-02-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/2/573.html?itemId=/content/journal/jgv/10.1099/vir.0.83471-0&mimeType=html&fmt=ahah

References

  1. Aguilar J. M., Franco M., Marco C. F., Berdiales B., Rodriguez-Cerezo E., Truniger V., Aranda M. A. 2003; Further variability within the genus Crinivirus , as revealed by determination of the complete RNA genome sequence of Cucurbit yellow stunting disorder virus . J Gen Virol 84:2555–2564 [CrossRef]
    [Google Scholar]
  2. Alicai T., Fenby N. S., Gibson R. W., Adipala E., Vetten H. J., Foster G. D., Seal S. E. 1999; Occurrence of two serotypes of sweet potato chlorotic stunt virus in East Africa and their associated differences in coat protein and HSP70 homologue gene sequences. Plant Pathol 48:718–726 [CrossRef]
    [Google Scholar]
  3. Bar-Joseph M., Yang G., Gafny R., Mawassi M. 1997; Subgenomic RNAs: the possible building blocks for modular recombination of Closteroviridae genomes. Semin Virol 8:113–119 [CrossRef]
    [Google Scholar]
  4. Che X., Mawassi M., Bar-Joseph M. 2002; A novel class of large and infectious defective RNAs of Citrus tristeza virus . Virology 298:133–145 [CrossRef]
    [Google Scholar]
  5. Che X., Dawson W. O., Bar-Joseph M. 2003; Defective RNAs of Citrus tristeza virus analogous to Crinivirus genomic RNAs. Virology 310:298–309 [CrossRef]
    [Google Scholar]
  6. Chiba M., Reed J. C., Prokhnevsky A. I., Chapman E. J., Mawassi M., Koonin E. V., Carrington J. C., Dolja V. V. 2006; Diverse suppressors of RNA silencing enhance agroinfection by a viral replicon. Virology 346:7–14 [CrossRef]
    [Google Scholar]
  7. Chung B.-N., Canto T., Palukaitis P. 2007; Stability of recombinant plant viruses containing genes of unrelated plant viruses. J Gen Virol 88:1347–1355 [CrossRef]
    [Google Scholar]
  8. Cohen J., Franck A., Vetten H. J., Lesemann D. E., Loebenstein G. 1992; Purification and properties of closterovirus-like particles associated with a whitefly-transmitted disease of sweet potato. Ann Appl Biol 121:257–268 [CrossRef]
    [Google Scholar]
  9. Dolja V. V., Kreuze J. F., Valkonen J. P. T. 2006; Comparative and functional genomics of closteroviruses. Virus Res 117:38–51 [CrossRef]
    [Google Scholar]
  10. Eliasco E., Livieratos I. C., Muller G., Guzman M., Salazar L. F., Coutts R. H. 2006; Sequences of defective RNAs associated with potato yellow vein virus. Arch Virol 151:201–204 [CrossRef]
    [Google Scholar]
  11. Fauquet C. M., Fargette D. 2005; International Committee on Taxonomy of Viruses and the 3,142 unassigned species. Virol J 2:64 [CrossRef]
    [Google Scholar]
  12. Fauquet C. M., Mayo M. A., Maniloff J., Desselberger U., Ball L. A. eds. 2005 Virus Taxonomy: Eighth Report of the International Committee on Taxonomy of Viruses San Diego: Elsevier Academic Press;
    [Google Scholar]
  13. Fenby N. S., Foster G. D., Gibson R. W., Seal S. E. 2002; Partial sequence of HSP70 homologue gene shows diversity between West African and East African isolates of sweet potato chlorotic stunt virus. Tropical Agric 79:26–30
    [Google Scholar]
  14. Gibson R. W., Mpembe I., Alicai T., Carey E. E., Mwanga R. O. M., Seal S. E., Vetten H. J. 1998; Symptoms, aetiology and serological analysis of sweet potato virus disease in Uganda. Plant Pathol 47:95–102 [CrossRef]
    [Google Scholar]
  15. Gutiérrez D. L., Fuentes S., Salazar L. F. 2003; Sweet potato virus disease (SPVD): distribution, incidence, and effect on sweetpotato yield in Peru. Plant Dis 87:297–302 [CrossRef]
    [Google Scholar]
  16. Hernandez C., Carette J. E., Brown D. J., Bol J. F. 1996; Serial passage of tobacco rattle virus under different selection conditions results in deletion of structural and nonstructural genes in RNA 2. J Virol 70:4933–4940
    [Google Scholar]
  17. Hoyer U., Jelkmann W., Maiss E., Vetten H. J. 1996a; Sweet potato sunken vein virus (SPSVV): another bipartite closterovirus transmitted by Bemisia tabaci . In Abstracts of Presentations on Plant Protection Issues, Xth International Congress of Virology Jerusalem: Israel. Phytoparasitica 26, issue 1: http://www.phytoparasitica.org/phyto/
    [Google Scholar]
  18. Hoyer U., Maiss E., Jelkmann W., Lesemann D.-E., Vetten H. J. 1996b; Identification of the coat protein gene of a sweet potato sunken vein closterovirus isolate from Kenya and evidence for serological relationship among geographically diverse closterovirus isolates from sweet potato. Phytopathology 86:744–750 [CrossRef]
    [Google Scholar]
  19. IsHak J. A., Kreuze J. F., Johansson A., Mukasa S. B., Tairo F., Abo El-Abbas F. M., Valkonen J. P. T. 2003; Some molecular characteristics of three viruses from SPVD-affected sweet potato plants in Egypt. Arch Virol 148:2449–2460 [CrossRef]
    [Google Scholar]
  20. Karasev A. V., Nikolaeva O. V., Mushegian A. R., Lee R. F., Dawson W. O. 1996; Organization of the 3′-terminal half of beet yellow stunt virus genome and implications for the evolution of closteroviruses. Virology 221:199–207 [CrossRef]
    [Google Scholar]
  21. Karyeija R. F., Kreuze J. F., Gibson R. W., Valkonen J. P. T. 2000; Synergistic interactions of a potyvirus and a phloem-limited crinivirus in sweet potato plants. Virology 269:26–36 [CrossRef]
    [Google Scholar]
  22. Kokkinos C. D., Clark C. A. 2006; Interactions among Sweet potato chlorotic stunt virus and different potyviruses and potyvirus strains infecting sweetpotato in the United States. Plant Dis 90:1347–1352 [CrossRef]
    [Google Scholar]
  23. Kreuze J. F., Karyeija R. F., Gibson R. W., Valkonen J. P. T. 2000; Comparisons of coat protein gene sequences show that East African isolates of Sweet potato feathery mottle virus form a genetically distinct group. Arch Virol 145:567–574 [CrossRef]
    [Google Scholar]
  24. Kreuze J. F., Savenkov E. I., Valkonen J. P. T. 2002; Complete genome sequence and analyses of the subgenomic RNAs of Sweet potato chlorotic stunt virus reveal several new features for the genus Crinivirus . J Virol 76:9260–9270 [CrossRef]
    [Google Scholar]
  25. Kreuze J. F., Savenkov E. I., Cuellar W., Li X., Valkonen J. P. T. 2005; Viral class 1 RNase III involved in suppression of RNA silencing. J Virol 79:7227–7238 [CrossRef]
    [Google Scholar]
  26. Lai M. M. 1992; RNA recombination in animal and plant viruses. Microbiol Rev 56:61–79
    [Google Scholar]
  27. Lakatos L., Csorba T., Pantaleo V., Chapman E. J., Carrington J. C., Liu Y. P., Dolja V. V., Calvino L. F., Lopez-Moya J. J., Burgyan J. 2006; Small RNA binding is a common strategy to suppress RNA silencing by several viral suppressors. EMBO J 25:2768–2780 [CrossRef]
    [Google Scholar]
  28. Lindbo J. A., Dougherty W. G. 2005; Plant pathology and RNAi: a brief history. Annu Rev Phytopathol 43:191–204 [CrossRef]
    [Google Scholar]
  29. Livak K. J., Schmittgen T. D. 2001; Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25:402–408 [CrossRef]
    [Google Scholar]
  30. Lu R., Folimonov A., Shintaku M., Li W. X., Falk B. W., Dawson W. O., Ding S. W. 2004; Three distinct suppressors of RNA silencing encoded by a 20-kb viral RNA genome. Proc Natl Acad Sci U S A 101:15742–15747 [CrossRef]
    [Google Scholar]
  31. Mérai Z., Kerényi Z., Kertész S., Magna M., Lakatos L., Silhavy D. 2006; Double-stranded RNA binding may be a general plant RNA viral strategy to suppress RNA silencing. J Virol 80:5747–5756 [CrossRef]
    [Google Scholar]
  32. Milgram M., Cohen J., Loebenstein G. 1996; Effects of sweet potato feathery mottle virus and sweet potato sunken vein virus on sweet potato yields and rates of reinfection of virus-free planting material in Israel. Phytoparasitica 24:189–193 [CrossRef]
    [Google Scholar]
  33. Mukasa S. B., Rubaihayo P. R., Valkonen J. P. T. 2006; Interactions between a crinivirus, an ipomovirus and a potyvirus in coinfected sweet potato plants. Plant Pathol 55:458–467 [CrossRef]
    [Google Scholar]
  34. Peremyslov V. V., Hagiwara Y., Dolja V. V. 1998; Genes required for replication of the 15.5-kilobase RNA genome of a plant closterovirus. J Virol 72:5870–5876
    [Google Scholar]
  35. Pio-Ribeiro G., Winter S., Jarret R. L., Demski J. W., Hamilton R. I. 1996; Detection of sweet potato virus disease-associated closterovirus in a sweet potato accession in the United States. Plant Dis 80:551–554 [CrossRef]
    [Google Scholar]
  36. Pruss G., Ge X., Shi X. M., Carrington J. C., Bowman Vance V. 1997; Plant viral synergism: the potyviral genome encodes a broad-range pathogenicity enhancer that transactivates replication of heterologous viruses. Plant Cell 9:859–868 [CrossRef]
    [Google Scholar]
  37. Qu F., Morris T. J. 2002; Efficient infection of Nicotiana benthamiana by Tomato bushy stunt virus is facilitated by the coat protein and maintained by p19 through suppression of gene silencing. Mol Plant Microbe Interact 15:193–202 [CrossRef]
    [Google Scholar]
  38. Reed J. C., Kasschau K. D., Prokhnevsky A. I., Gopinath K., Pogue G. P., Carrington J. C., Dolja V. V. 2003; Suppressor of RNA silencing encoded by Beet yellows virus . Virology 306:203–209 [CrossRef]
    [Google Scholar]
  39. Sandgren M., Savenkov E. I., Valkonen J. P. T. 2001; The readthrough region of Potato mop-top virus (PMTV) coat protein encoding RNA, the second largest RNA of PMTV genome, undergoes structural changes in naturally infected and experimentally inoculated plants. Arch Virol 146:467–477 [CrossRef]
    [Google Scholar]
  40. Schaefers G. A., Terry E. R. 1976; Insect transmission of sweet potato virus disease agents in Nigeria. Phytopathology 66:642–645 [CrossRef]
    [Google Scholar]
  41. Scholthof H. B. 2006; The tombusvirus-encoded P19: from irrelevance to elegance. Nat Rev Microbiol 4:405–411 [CrossRef]
    [Google Scholar]
  42. Silhavy D., Molnar A., Lucioli A., Szittya G., Hornyik C., Tavazza M., Burgyan J. 2002; A viral protein suppresses RNA silencing and binds silencing-generated, 21- to 25-nucleotide double-stranded RNAs. EMBO J 21:3070–3080 [CrossRef]
    [Google Scholar]
  43. Simon A. E., Bujarski J. J. 1994; RNA–RNA recombination and evolution in virus-infected plants. Annu Rev Phytopathol 32:337–362 [CrossRef]
    [Google Scholar]
  44. Simon A. E., Roossinck M. J., Havelda Z. 2004; Plant virus satellite and defective interfering RNAs: new paradigms for a new century. Annu Rev Phytopathol 42:415–437 [CrossRef]
    [Google Scholar]
  45. Stenger D. C., French R., Gildow F. E. 2005; Complete deletion of Wheat streak mosaic virus HC-Pro: a null mutant is viable for systemic infection. J Virol 79:12077–12080 [CrossRef]
    [Google Scholar]
  46. Tairo F., Mukasa S. B., Jones R. A., Kullaya A., Rubaihayo P. R., Valkonen J. P. T. 2005; Unravelling the genetic diversity of the three main viruses involved in sweet potato virus disease (SPVD), and its practical implications. Mol Plant Pathol 6:199–211 [CrossRef]
    [Google Scholar]
  47. Torrance L., Cowan G. H., Sokmen M. A., Reavy B. 1999; A naturally occurring deleted form of RNA 2 of potato mop-top virus. J Gen Virol 80:2211–2215
    [Google Scholar]
  48. Untiveros M., Fuentes S., Salazar L. F. 2007; Synergistic interaction of sweet potato chlorotic stunt virus ( Crinivirus ) with carla-, cucumo-, ipomo-, and potyviruses infecting sweet potato. Phytopathology 91:669–676
    [Google Scholar]
  49. Vetten H. J., Hoyer U., Maiss E., Lesemann D. E., Jelkmann W. 1996; Serological detection and discrimination of geographically diverse isolates of sweet potato sunken vein closterovirus. Phytopathology 86:891A [CrossRef]
    [Google Scholar]
  50. Voinnet O. 2005; Induction and suppression of RNA silencing: insights from viral infections. Nat Rev Genet 6:206–220 [CrossRef]
    [Google Scholar]
  51. Winter S., Purac A., Leggett F., Frison E. A., Rossel H. W., Hamilton R. I. 1992; Partial characterization and molecular cloning of a closterovirus from sweet potato infected with the sweet potato virus disease complex from Nigeria. Phytopathology 82:869–875 [CrossRef]
    [Google Scholar]
  52. Worobey M., Holmes E. C. 1999; Evolutionary aspects of recombination in RNA viruses. J Gen Virol 80:2535–2543
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83471-0
Loading
/content/journal/jgv/10.1099/vir.0.83471-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed