1887

Abstract

The flavivirus NS2B/NS3 protease has received considerable attention as a target for the development of antiviral compounds. While substrate based inhibitors have been the primary focus to date, an approach focussing on NS2B cofactor displacement could prove to be an effective alternative. To understand better the role of the NS2B cofactor in protease activation, we conducted an alanine mutagenesis screen throughout the 42-residue central cofactor domain (NS2B) of West Nile virus (WNV). Two sites critical for proteolytic activity were identified (NS2B and NS2B), where the majority of substitutions were found to significantly decrease proteolytic activity of a recombinant WNV NS2B/NS3 protease. These findings provide mechanistic insights into the structural and functional role that the cofactor may play in the substrate-bound and free protease complexes as well as providing novel sites for targeting new antiviral inhibitors.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83447-0
2008-04-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/4/1010.html?itemId=/content/journal/jgv/10.1099/vir.0.83447-0&mimeType=html&fmt=ahah

References

  1. Aleshin A. E., Shiryaev S. A., Strongin A. Y., Liddington R. C. 2007; Structural evidence for regulation and specificity of flaviviral proteases and evolution of the Flaviviridae fold. Protein Sci 16:795–806 [CrossRef]
    [Google Scholar]
  2. Brinkworth R. I., Fairlie D. P., Leung D., Young P. R. 1999; Homology model of the dengue 2 virus NS3 protease: putative interactions with both substrate and NS2B cofactor. J Gen Virol 80:1167–1177
    [Google Scholar]
  3. Chambers T. J., Weir R. C., Grakoui A., McCourt D. W., Bazan J. F., Fletterick R. J., Rice C. M. 1990; Evidence that the N-terminal domain of nonstructural protein NS3 from yellow fever virus is a serine protease responsible for site-specific cleavages in the viral polyprotein. Proc Natl Acad Sci U S A 87:8898–8902 [CrossRef]
    [Google Scholar]
  4. Chambers T. J., Nestorowicz A., Amberg S. M., Rice C. M. 1993; Mutagenesis of the yellow fever virus NS2B protein: effects on proteolytic processing, NS2B–NS3 complex formation, and viral replication. J Virol 67:6797–6807
    [Google Scholar]
  5. Chambers T. J., Droll D. A., Tang Y., Liang Y., Ganesh V. K., Murthy K. H., Nickells M. 2005; Yellow fever virus NS2B-NS3 protease: characterization of charged-to-alanine mutant and revertant viruses and analysis of polyprotein-cleavage activities. J Gen Virol 86:1403–1413 [CrossRef]
    [Google Scholar]
  6. Chappell K. J., Stoermer M. J., Fairlie D. P., Young P. R. 2006; West Nile virus NS3 protease: insights into substrate binding and processing through combined modelling, protease mutagenesis and kinetic studies. J Biol Chem 281:38448–38458 [CrossRef]
    [Google Scholar]
  7. Droll D. A., Krishna Murthy H. M., Chambers T. J. 2000; Yellow fever virus NS2B–NS3 protease: charged-to-alanine mutagenesis and deletion analysis define regions important for protease complex formation and function. Virology 275:335–347 [CrossRef]
    [Google Scholar]
  8. Erbel P., Schiering N., D'Arcy A., Renatus M., Kroemer M., Lim S. P., Yin Z., Keller T. H., Vasudevan S. G., Hommel U. 2006; Structural basis for the activation of flaviviral NS3 proteases from dengue and West Nile virus. Nat Struct Mol Biol 13:372–373 [CrossRef]
    [Google Scholar]
  9. Falgout B., Miller R. H., Lai C. J. 1993; Deletion analysis of dengue virus type 4 nonstructural protein NS2B: identification of a domain required for NS2B–NS3 protease activity. J Virol 67:2034–2042
    [Google Scholar]
  10. Gorbalenya A. E., Donchenko A. P., Koonin E. V., Blinov V. M. 1989; N-terminal domains of putative helicases of flavi- and pestiviruses may be serine proteases. Nucleic Acids Res 17:3889–3897 [CrossRef]
    [Google Scholar]
  11. Gould L. H., Fikrig E. 2004; West Nile virus: a growing concern?. J Clin Invest 113:1102–1107 [CrossRef]
    [Google Scholar]
  12. Hayes C. G. 2001; West Nile Virus: Uganda, 1937, to New York City, 1999. Ann N Y Acad Sci 951:25–37
    [Google Scholar]
  13. Komar N., Clark G. G. 2006; West Nile virus activity in Latin America and the Caribbean. Rev Panam Salud Publica 19:112–117 [CrossRef]
    [Google Scholar]
  14. Melino S., Fucito S., Campagna A., Wrubl F., Gamarnik A., Cicero D. O., Paci M. 2006; The active essential CFNS3d protein complex. FEBS J 273:3650–3662 [CrossRef]
    [Google Scholar]
  15. Murthy H. M., Judge K., DeLucas L., Padmanabhan R. 2000; Crystal structure of Dengue virus NS3 protease in complex with a Bowman-Birk inhibitor: implications for flaviviral polyprotein processing and drug design. J Mol Biol 301:759–767 [CrossRef]
    [Google Scholar]
  16. Nall T. A., Chappell K. J., Stoermer M. J., Fang N. X., Tyndall J. D., Young P. R., Fairlie D. P. 2004; Enzymatic characterization and homology model of a catalytically active recombinant West Nile virus NS3 protease. J Biol Chem 279:48535–48542 [CrossRef]
    [Google Scholar]
  17. Niyomrattanakit P., Winoyanuwattikun P., Chanprapaph S., Angsuthanasombat C., Panyim S., Katzenmeier G. 2004; Identification of residues in the dengue virus type 2 NS2B cofactor that are critical for NS3 protease activation. J Virol 78:13708–13716 [CrossRef]
    [Google Scholar]
  18. Pastorino B. A., Peyrefitte C. N., Grandadam M., Thill M. C., Tolou H. J., Bessaud M. 2006; Mutagenesis analysis of the NS2B determinants of the Alkhurma virus NS2B–NS3 protease activation. J Gen Virol 87:3279–3283 [CrossRef]
    [Google Scholar]
  19. van der Meulen K. M., Pensaert M. B., Nauwynck H. J. 2005; West Nile virus in the vertebrate world. Arch Virol 150:637–657 [CrossRef]
    [Google Scholar]
  20. Wengler G. 1991; The carboxy-terminal part of the NS 3 protein of the West Nile flavivirus can be isolated as a soluble protein after proteolytic cleavage and represents an RNA-stimulated NTPase. Virology 184:707–715 [CrossRef]
    [Google Scholar]
  21. Westaway E. G., Mackenzie J. M., Kenney M. T., Jones M. K., Khromykh A. A. 1997; Ultrastructure of Kunjin virus-infected cells: colocalization of NS1 and NS3 with double-stranded RNA, and of NS2B with NS3, in virus-induced membrane structures. J Virol 71:6650–6661
    [Google Scholar]
  22. Yusof R., Clum S., Wetzel M., Murthy H. M., Padmanabhan R. 2000; Purified NS2B/NS3 serine protease of dengue virus type 2 exhibits cofactor NS2B dependence for cleavage of substrates with dibasic amino acids in vitro. J Biol Chem 275:9963–9969 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83447-0
Loading
/content/journal/jgv/10.1099/vir.0.83447-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error