1887

Abstract

A tail fibroblast (MDTF) cell line is highly resistant to infection by ecotropic Moloney murine leukemia virus (Mo-MLV). The cationic amino acid transporter type 1 (CAT1) paralogues of murine NIH 3T3 and MDTF cells (mCAT1 and dCAT1, respectively) contain two conserved -linked glycosylation sites in the third extracellular loop (ECL3, the putative Mo-MLV binding site). Glycosylation of dCAT1 inhibits Mo-MLV infection, but that of mCAT1 does not. Compared with mCAT1, dCAT1 possesses an Ile-to-Val substitution at position 214 and a Gly insertion at position 236 in the ECL3. To determine the residues responsible for the loss of dCAT1 receptor function, mutants of mCAT1 were constructed. The mCAT1/insG receptor (with a Gly residue inserted at mCAT1 position 236) had greatly reduced Mo-MLV receptor function compared with mCAT1. Treatment of mCAT1/insG-expressing cells with tunicamycin, an -linked glycosylation inhibitor, increased the transduction titre. In addition, the reduced susceptibility to Mo-MLV observed with mCAT1/insG-expressing cells correlated with impaired binding of Mo-MLV. These results show that a single amino acid insertion confers mCAT1 receptor properties on dCAT1 and provide an important insight into the co-evolution of virus–host interactions.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83430-0
2008-01-01
2020-01-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/1/297.html?itemId=/content/journal/jgv/10.1099/vir.0.83430-0&mimeType=html&fmt=ahah

References

  1. Albritton, L. M., Tseng, L., Scadden, D. & Cunningham, J. M. ( 1989; ). A putative murine ecotropic retrovirus receptor gene encodes a multiple membrane-spanning protein and confers susceptibility to virus infection. Cell 57, 659–666.[CrossRef]
    [Google Scholar]
  2. Albritton, L. M., Kim, J. W., Tseng, L. & Cunningham, J. M. ( 1993; ). Envelope-binding domain in the cationic amino acid transporter determines the host range of ecotropic murine retroviruses. J Virol 67, 2091–2096.
    [Google Scholar]
  3. Bae, E. H., Park, S. H. & Jung, Y. T. ( 2006; ). Role of a third extracellular domain of an ecotropic receptor in Moloney murine leukemia virus infection. J Microbiol 44, 447–452.
    [Google Scholar]
  4. Chang, L.-J., Urlacher, V., Iwakuma, T., Cui, Y. & Zucali, J. ( 1999; ). Efficacy and safety analyses of a recombinant human immunodeficiency virus type 1 derived vector system. Gene Ther 6, 715–728.[CrossRef]
    [Google Scholar]
  5. Chesebro, B. & Wehrly, K. ( 1985; ). Different cell lines manifest unique patterns of interference to superinfection by murine viruses. Virology 141, 119–129.[CrossRef]
    [Google Scholar]
  6. Cosset, F.-L., Takeuchi, Y., Battini, J.-L. & Weiss, R. A. ( 1995; ). High-titer packaging cells producing recombinant retroviruses resistant to human serum. J Virol 69, 7430–7436.
    [Google Scholar]
  7. Eiden, M. V., Farrell, K., Warsowe, J., Mahan, L. C. & Wilson, C. A. ( 1993; ). Characterization of a naturally occurring ecotropic receptor that does not facilitate entry of all ecotropic murine retroviruses. J Virol 67, 4056–4061.
    [Google Scholar]
  8. Eiden, M. V., Farrell, K. & Wilson, C. A. ( 1994; ). Glycosylation-dependent inactivation of the ecotropic murine leukemia virus receptor. J Virol 68, 626–631.
    [Google Scholar]
  9. Helenius, A. & Aebi, M. ( 2001; ). Intracellular functions of N-linked glycans. Science 291, 2364–2369.[CrossRef]
    [Google Scholar]
  10. Helenius, A. & Aebi, M. ( 2004; ). Roles of N-linked glycans in the endoplasmic reticulum. Annu Rev Biochem 73, 1019–1049.[CrossRef]
    [Google Scholar]
  11. Ishimoto, A. ( 1985; ). Infectivity of Friend murine leukemia virus for hamster cells. J Natl Cancer Inst 74, 905–908.
    [Google Scholar]
  12. Jung, Y. T., Wu, T. & Kozak, C. A. ( 2004; ). Novel host range and cytopathic variant of ecotropic Friend murine leukemia virus. J Virol 78, 12189–12197.[CrossRef]
    [Google Scholar]
  13. Kim, J. W., Closs, E. I., Albritton, L. M. & Cunningham, J. M. ( 1991; ). Transport of cationic amino acids by the mouse ecotropic retrovirus receptor. Nature 352, 725–728.[CrossRef]
    [Google Scholar]
  14. Kubo, Y. & Amanuma, H. ( 2003; ). Mutational analysis of the R peptide cleavage site of Moloney murine leukemia virus envelope protein. J Gen Virol 84, 2253–2257.[CrossRef]
    [Google Scholar]
  15. Kubo, Y., Ono, T., Ogura, M., Ishimoto, A. & Amanuma, H. ( 2002; ). A glycosylation-defective variant of the ecotropic murine retrovirus receptor is expressed in rat XC cells. Virology 303, 338–344.[CrossRef]
    [Google Scholar]
  16. Kubo, Y., Ishimoto, A., Ono, T., Yoshii, H., Tominaga, C., Mitani, C., Amanuma, H. & Yamamoto, N. ( 2004; ). Determinant for the inhibition of ecotropic murine leukemia virus infection by N-linked glycosylation of the rat receptor. Virology 330, 82–91.[CrossRef]
    [Google Scholar]
  17. Lander, M. R. & Chattopadhyay, S. K. ( 1984; ). A Mus dunni cell line that lacks sequences closely related to endogenous murine leukemia viruses and can be infected by ecotropic, amphotropic, xenotropic, and mink cell focus-forming viruses. J Virol 52, 695–698.
    [Google Scholar]
  18. Lavillette, D., Ruggieri, A., Russell, S. J. & Cosset, F.-L. ( 2000; ). Activation of a cell entry pathway common to type C mammalian retroviruses by soluble envelope fragments. J Virol 74, 295–304.[CrossRef]
    [Google Scholar]
  19. Masuda, M., Masuda, M., Hanson, C. A., Hoffman, P. M. & Ruscetti, S. K. ( 1996; ). Analysis of the unique hamster cell tropism of ecotropic murine leukemia virus PVC-211. J Virol 70, 8534–8539.
    [Google Scholar]
  20. Miller, D. G. & Miller, A. D. ( 1992; ). Tunicamycin treatment of CHO cells abrogates multiple blocks to retrovirus infection, one of which is due to a secreted inhibitor. J Virol 66, 78–84.
    [Google Scholar]
  21. Onishi, M., Kinoshita, S., Morikawa, Y., Shibuya, A., Phillips, J., Lanier, L. L., Gorman, D. M., Nolan, G. P., Miyajima, A. & Kitamura, T. ( 1996; ). Applications of retroviruses-mediated expression cloning. Exp Hematol 24, 324–329.
    [Google Scholar]
  22. Overbaugh, J., Miller, A. D. & Eiden, M. V. ( 2001; ). Receptor and entry cofactors for retroviruses include single and multiple transmembrane-spanning proteins as well as newly described glycophosphatidylinositol-anchored and secreted proteins. Microbiol Mol Biol Rev 65, 371–389.[CrossRef]
    [Google Scholar]
  23. Perkins, C. P., Mar, V., Shutter, J. R., Castillo, J., Danilenko, D. M., Medlock, E. S., Ponting, I. L., Graham, M., Stark, K. L. & other authors ( 1997; ). Anemia and perinatal death result from loss of the murine ecotropic retrovirus receptor mCAT-1. Genes Dev 11, 914–925.[CrossRef]
    [Google Scholar]
  24. Soda, Y., Shimizu, N., Jinno, A., Liu, H., Kanbe, K., Kitamura, T. & Hoshino, H. ( 1999; ). Establishment of a new system for determination of coreceptor usage of HIV based on the human glioma NP-2 cell line. Biochem Biophys Res Commun 258, 313–321.[CrossRef]
    [Google Scholar]
  25. Sommerfelt, M. A. ( 1999; ). Retrovirus receptors. J Gen Virol 80, 3049–3064.
    [Google Scholar]
  26. Tailor, C. S., Nouri, A. & Kabat, D. ( 2000; ). Cellular and species resistance to murine amphotropic, gibbon ape, and feline subgroup C leukemia viruses is strongly influenced by receptor expression levels and by receptor masking mechanisms. J Virol 74, 9797–9801.[CrossRef]
    [Google Scholar]
  27. Tailor, C. S., Lavilette, D., Martin, M. & Kabat, D. ( 2003; ). Cell surface receptors for gamma retroviruses. Curr Top Microbiol Immunol 281, 29–106.
    [Google Scholar]
  28. Takase-Yoden, S. & Watanabe, R. ( 1999; ). Contribution of virus–receptor interaction to distinct viral proliferation of neuropathogenic and non-neuropathogenic murine leukemia viruses in rat glial cells. J Virol 73, 4461–4464.
    [Google Scholar]
  29. Tavoloni, N. & Rudenholz, A. ( 1997; ). Variable transduction efficiency of murine leukemia retroviral vector on mammalian cells: role of cellular glycosylation. Virology 229, 49–56.[CrossRef]
    [Google Scholar]
  30. Wang, H., Kavanaugh, M. P., North, R. A. & Kabat, D. ( 1991; ). Cell-surface receptor for ecotropic murine retroviruses is a basic amino acid transporter. Nature 352, 729–731.[CrossRef]
    [Google Scholar]
  31. Wang, H., Klamo, E., Kuhmann, S. E., Kozak, S. L., Kavanaugh, M. P. & Kabat, D. ( 1996; ). Modulation of ecotropic murine retroviruses by N-linked glycosylation of the cell surface receptor/amino acid transporter. J Virol 70, 6884–6891.
    [Google Scholar]
  32. Wilson, C. A. & Eiden, M. V. ( 1991; ). Viral and cellular factors governing hamster cell infection by murine leukemia and gibbon ape leukemia viruses. J Virol 65, 5975–5982.
    [Google Scholar]
  33. Yoshimoto, T., Yoshimoto, E. & Meruelo, D. ( 1991; ). Molecular cloning and characterization of a novel human gene homologous to the murine ecotropic retrovirus receptor. Virology 185, 10–17.[CrossRef]
    [Google Scholar]
  34. Yoshimoto, T., Yoshimoto, E. & Meruelo, D. ( 1993; ). Identification of amino acid residues critical for infection with ecotropic murine leukemia retrovirus. J Virol 67, 1310–1314.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83430-0
Loading
/content/journal/jgv/10.1099/vir.0.83430-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error