1887

Abstract

We previously demonstrated the presence of tyrosine-dependent motifs for specific sorting of two measles virus (MV) glycoproteins, H and F, to the basolateral surface in polarized epithelial cells. Targeted expression of the glycoproteins was found to be required for virus spread in epithelia via cell-to-cell fusion and . In the present study, recombinant MVs (rMVs) with substitutions of the critical tyrosines in the H and F cytoplasmic domains were used to determine whether the sorting signals also play a crucial role for MV replication and spread within lymphocytes, the main target cells of acute MV infection. Immunolocalization revealed that only standard glycoproteins are targeted specifically to the uropod of polarized lymphocytes and cluster on the surface of non-polarized lymphocytes. H and F proteins with tyrosine mutations did not accumulate in uropods, but were distributed homogeneously on the surface and did not colocalize markedly with the matrix (M) protein. Due to the defective interaction with the M protein, all mutant rMVs showed an enhanced fusion capacity, but only rMVs harbouring two mutated glycoproteins showed a marked decrease in virus release from infected lymphocytes. These results demonstrate clearly that the tyrosine-based targeting motifs in the MV glycoproteins are not only important in polarized epithelial cells, but are also active in lymphocytes, thus playing an important role in virus propagation in different key target cells during acute MV infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83407-0
2008-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/3/687.html?itemId=/content/journal/jgv/10.1099/vir.0.83407-0&mimeType=html&fmt=ahah

References

  1. Avota E., Avots A., Niewiesk S., Kane L. P., Bommhardt U., ter Meulen V., Schneider-Schaulies S. 2001; Disruption of Akt kinase activation is important for immunosuppression induced by measles virus. Nat Med 7:725–731 [CrossRef]
    [Google Scholar]
  2. Bonifacino J. S., Dell'Angelica E. C. 1999; Molecular bases for the recognition of tyrosine-based sorting signals. J Cell Biol 145:923–926 [CrossRef]
    [Google Scholar]
  3. Borrow P., Oldstone M. B. 1995; Measles virus-mononuclear cell interactions. Curr Top Microbiol Immunol 191:85–100
    [Google Scholar]
  4. Bretscher M. S. 1996; Getting membrane flow and the cytoskeleton to cooperate in moving cells. Cell 87:601–606 [CrossRef]
    [Google Scholar]
  5. Campanero M. R., Sanchez-Mateos P., del Pozo M. A., Sanchez-Madrid F. 1994; ICAM-3 regulates lymphocyte morphology and integrin-mediated T cell interaction with endothelial cell and extracellular matrix ligands. J Cell Biol 127:867–878 [CrossRef]
    [Google Scholar]
  6. Cathomen T., Mrkic B., Spehner D., Drillien R., Naef R., Pavlovic J., Aguzzi A., Billeter M. A., Cattaneo R. 1998a; A matrix-less measles virus is infectious and elicits extensive cell fusion: consequences for propagation in the brain. EMBO J 17:3899–3908 [CrossRef]
    [Google Scholar]
  7. Cathomen T., Naim H. Y., Cattaneo R. 1998b; Measles viruses with altered envelope protein cytoplasmic tails gain cell fusion competence. J Virol 72:1224–1234
    [Google Scholar]
  8. Danis C., Deschambeault J., Do Carmo S., Cohen E. A., Rassart E., Lemay G. 2004; The tyrosine-based YXXO targeting motif of murine leukemia virus envelope glycoprotein affects pathogenesis. Virology 324:173–183 [CrossRef]
    [Google Scholar]
  9. del Pozo M. A., Sanchez-Mateos P., Nieto M., Sanchez-Madrid F. 1995; Chemokines regulate cellular polarization and adhesion receptor redistribution during lymphocyte interaction with endothelium and extracellular matrix. Involvement of cAMP signaling pathway. J Cell Biol 131:495–508 [CrossRef]
    [Google Scholar]
  10. del Pozo M. A., Cabanas C., Montoya M. C., Ager A., Sanchez-Mateos P., Sanchez-Madrid F. 1997; ICAMs redistributed by chemokines to cellular uropods as a mechanism for recruitment of T lymphocytes. J Cell Biol 137:493–508 [CrossRef]
    [Google Scholar]
  11. Deschambeault J., Lalonde J. P., Cervantes-Acosta G., Lodge R., Cohen E. A., Lemay G. 1999; Polarized human immunodeficiency virus budding in lymphocytes involves a tyrosine-based signal and favors cell-to-cell viral transmission. J Virol 73:5010–5017
    [Google Scholar]
  12. Ehrengruber M. U., Ehler E., Billeter M. A., Naim H. Y. 2002; Measles virus spreads in rat hippocampal neurons by cell-to-cell contact and in a polarized fashion. J Virol 76:5720–5728 [CrossRef]
    [Google Scholar]
  13. Erlenhoefer C., Wurzer W. J., Loffler S., Schneider-Schaulies S., ter Meulen V., Schneider-Schaulies J. 2001; CD150 (SLAM) is a receptor for measles virus but is not involved in viral contact-mediated proliferation inhibition. J Virol 75:4499–4505 [CrossRef]
    [Google Scholar]
  14. Esolen L. M., Ward B. J., Moench T. R., Griffin D. E. 1993; Infection of monocytes during measles. J Infect Dis 168:47–52 [CrossRef]
    [Google Scholar]
  15. Fuller S., von Bonsdorff C. H., Simons K. 1984; Vesicular stomatitis virus infects and matures only through the basolateral surface of the polarized epithelial cell line, MDCK. Cell 38:65–77 [CrossRef]
    [Google Scholar]
  16. Gomez-Mouton C., Abad J. L., Mira E., Lacalle R. A., Gallardo E., Jimenez-Baranda S., Illa I., Bernad A., Manes S., Martinez A. C. 2001; Segregation of leading-edge and uropod components into specific lipid rafts during T cell polarization. Proc Natl Acad Sci U S A 98:9642–9647 [CrossRef]
    [Google Scholar]
  17. Grakoui A., Bromley S. K., Sumen C., Davis M. M., Shaw A. S., Allen P. M., Dustin M. L. 1999; The immunological synapse: a molecular machine controlling T cell activation. Science 285:221–227 [CrossRef]
    [Google Scholar]
  18. Henis Y. I., Herman-Barhom Y., Aroeti B., Gutman O. 1989; Lateral mobility of both envelope proteins (F and HN) of Sendai virus in the cell membrane is essential for cell-cell fusion. J Biol Chem 264:17119–17125
    [Google Scholar]
  19. Hyypia T., Korkiamaki P., Vainionpaa R. 1985; Replication of measles virus in human lymphocytes. J Exp Med 161:1261–1271 [CrossRef]
    [Google Scholar]
  20. Igakura T., Stinchcombe J. C., Goon P. K., Taylor G. P., Weber J. N., Griffiths G. M., Tanaka Y., Osame M., Bangham C. R. 2003; Spread of HTLV-I between lymphocytes by virus-induced polarization of the cytoskeleton. Science 299:1713–1716 [CrossRef]
    [Google Scholar]
  21. Johansson S., Svineng G., Wennerberg K., Armulik A., Lohikangas L. 1997; Fibronectin-integrin interactions. Front Biosci 2:d126–d146
    [Google Scholar]
  22. Jolly C., Sattentau Q. J. 2004; Retroviral spread by induction of virological synapses. Traffic 5:643–650 [CrossRef]
    [Google Scholar]
  23. Jolly C., Kashefi K., Hollinshead M., Sattentau Q. J. 2004; HIV-1 cell to cell transfer across an Env-induced, actin-dependent synapse. J Exp Med 199:283–293 [CrossRef]
    [Google Scholar]
  24. Krummel M. F., Macara I. 2006; Maintenance and modulation of T cell polarity. Nat Immunol 7:1143–1149 [CrossRef]
    [Google Scholar]
  25. Lawrence D. M., Patterson C. E., Gales T. L., D'Orazio J. L., Vaughn M. M., Rall G. F. 2000; Measles virus spread between neurons requires cell contact but not CD46 expression, syncytium formation, or extracellular virus production. J Virol 74:1908–1918 [CrossRef]
    [Google Scholar]
  26. Lodge R., Lalonde J. P., Lemay G., Cohen E. A. 1997; The membrane-proximal intracytoplasmic tyrosine residue of HIV-1 envelope glycoprotein is critical for basolateral targeting of viral budding in MDCK cells. EMBO J 16:695–705 [CrossRef]
    [Google Scholar]
  27. Maisner A., Klenk H., Herrler G. 1998; Polarized budding of measles virus is not determined by viral surface glycoproteins. J Virol 72:5276–5278
    [Google Scholar]
  28. Manie S. N., Debreyne S., Vincent S., Gerlier D. 2000; Measles virus structural components are enriched into lipid raft microdomains: a potential cellular location for virus assembly. J Virol 74:305–311 [CrossRef]
    [Google Scholar]
  29. McDonald D., Wu L., Bohks S. M., KewalRamani V. N., Unutmaz D., Hope T. J. 2003; Recruitment of HIV and its receptors to dendritic cell-T cell junctions. Science 300:1295–1297 [CrossRef]
    [Google Scholar]
  30. Millan J., Montoya M. C., Sancho D., Sanchez-Madrid F., Alonso M. A. 2002; Lipid rafts mediate biosynthetic transport to the T lymphocyte uropod subdomain and are necessary for uropod integrity and function. Blood 99:978–984 [CrossRef]
    [Google Scholar]
  31. Moll M., Klenk H. D., Herrler G., Maisner A. 2001; A single amino acid change in the cytoplasmic domains of measles virus glycoproteins H and F alters targeting, endocytosis, and cell fusion in polarized Madin-Darby canine kidney cells. J Biol Chem 276:17887–17894 [CrossRef]
    [Google Scholar]
  32. Moll M., Klenk H. D., Maisner A. 2002; Importance of the cytoplasmic tails of the measles virus glycoproteins for fusogenic activity and the generation of recombinant measles viruses. J Virol 76:7174–7186 [CrossRef]
    [Google Scholar]
  33. Moll M., Pfeuffer J., Klenk H. D., Niewiesk S., Maisner A. 2004; Polarized glycoprotein targeting affects the spread of measles virus in vitro and in vivo. J Gen Virol 85:1019–1027 [CrossRef]
    [Google Scholar]
  34. Mora R., Rodriguez-Boulan E., Palese P., Garcia-Sastre A. 2002; Apical budding of a recombinant influenza A virus expressing a hemagglutinin protein with a basolateral localization signal. J Virol 76:3544–3553 [CrossRef]
    [Google Scholar]
  35. Mrkic B., Odermatt B., Klein M. A., Billeter M. A., Pavlovic J., Cattaneo R. 2000; Lymphatic dissemination and comparative pathology of recombinant measles viruses in genetically modified mice. J Virol 74:1364–1372 [CrossRef]
    [Google Scholar]
  36. Muller N., Avota E., Schneider-Schaulies J., Harms H., Krohne G., Schneider-Schaulies S. 2006; Measles virus contact with T cells impedes cytoskeletal remodeling associated with spreading, polarization, and CD3 clustering. Traffic 7:849–858 [CrossRef]
    [Google Scholar]
  37. Negulescu P. A., Krasieva T. B., Khan A., Kerschbaum H. H., Cahalan M. D. 1996; Polarity of T cell shape, motility, and sensitivity to antigen. Immunity 4:421–430 [CrossRef]
    [Google Scholar]
  38. Nguyen D. H., Hildreth J. E. 2000; Evidence for budding of human immunodeficiency virus type 1 selectively from glycolipid-enriched membrane lipid rafts. J Virol 74:3264–3272 [CrossRef]
    [Google Scholar]
  39. Nieto M., Frade J. M., Sancho D., Mellado M., Martinez A. C., Sanchez-Madrid F. 1997; Polarization of chemokine receptors to the leading edge during lymphocyte chemotaxis. J Exp Med 186:153–158 [CrossRef]
    [Google Scholar]
  40. Osunkoya B. O., Ukaejiofo E. O., Ajayi O., Akinyemi A. A. 1990; Evidence that circulating lymphocytes act as vehicles or viraemia in measles. West Afr J Med 9:35–39
    [Google Scholar]
  41. Peebles M. E. 1991; Paramyxovirus M proteins: pulling it all together and taking it on the road. In The Paramyxoviruses pp 427–456Edited by Kingsbury. New York: Plenum Press;
    [Google Scholar]
  42. Rodriguez-Boulan E., Powell S. K. 1992; Polarity of epithelial and neuronal cells. Annu Rev Cell Biol 8:395–427 [CrossRef]
    [Google Scholar]
  43. Rodriguez-Boulan E., Kreitzer G., Musch A. 2005; Organization of vesicular trafficking in epithelia. Nat Rev Mol Cell Biol 6:233–247 [CrossRef]
    [Google Scholar]
  44. Runkler N., Pohl C., Schneider-Schaulies S., Klenk H. D., Maisner A. 2007; Measles virus nucleocapsid transport to the plasma membrane requires stable expression and surface accumulation of the viral matrix protein. Cell Microbiol 9:1203–1214 [CrossRef]
    [Google Scholar]
  45. Sanchez-Madrid F., del Pozo M. A. 1999; Leukocyte polarization in cell migration and immune interactions. EMBO J 18:501–511 [CrossRef]
    [Google Scholar]
  46. Sanger C., Muhlberger E., Ryabchikova E., Kolesnikova L., Klenk H. D., Becker S. 2001; Sorting of Marburg virus surface protein and virus release take place at opposite surfaces of infected polarized epithelial cells. J Virol 75:1274–1283 [CrossRef]
    [Google Scholar]
  47. Schlender J., Schnorr J. J., Spielhoffer P., Cathomen T., Cattaneo R., Billeter M. A., ter Meulen V., Schneider-Schaulies S. 1996; Interaction of measles virus glycoproteins with the surface of uninfected peripheral blood lymphocytes induces immunosuppression in vitro. Proc Natl Acad Sci U S A 93:13194–13199 [CrossRef]
    [Google Scholar]
  48. Schneider-Schaulies S., Niewiesk S., Schneider-Schaulies J., ter Meulen V. 2001; Measles virus induced immunosuppression: targets and effector mechanisms. Curr Mol Med 1:163–181 [CrossRef]
    [Google Scholar]
  49. Serrador J. M., Nieto M., Alonso-Lebrero J. L., del Pozo M. A., Calvo J., Furthmayr H., Schwartz-Albiez R., Lozano F., Gonzalez-Amaro R. other authors 1998; CD43 interacts with moesin and ezrin and regulates its redistribution to the uropods of T lymphocytes at the cell-cell contacts. Blood 91:4632–4644
    [Google Scholar]
  50. Spielhofer P., Bachi T., Fehr T., Christiansen G., Cattaneo R., Kaelin K., Billeter M. A., Naim H. Y. 1998; Chimeric measles viruses with a foreign envelope. J Virol 72:2150–2159
    [Google Scholar]
  51. Takimoto T., Bousse T., Coronel E. C., Scroggs R. A., Portner A. 1998; Cytoplasmic domain of Sendai virus HN protein contains a specific sequence required for its incorporation into virions. J Virol 72:9747–9754
    [Google Scholar]
  52. Tashiro M., Yamakawa M., Tobita K., Seto J. T., Klenk H. D., Rott R. 1990; Altered budding site of a pantropic mutant of Sendai virus, F1-R, in polarized epithelial cells. J Virol 64:4672–4677
    [Google Scholar]
  53. Turville S. G., Santos J. J., Frank I., Cameron P. U., Wilkinson J., Miranda-Saksena M., Dable J., Stossel H., Romani N. other authors 2004; Immunodeficiency virus uptake, turnover, and 2-phase transfer in human dendritic cells. Blood 103:2170–2179 [CrossRef]
    [Google Scholar]
  54. Udem S. A. 1984; Measles virus: conditions for the propagation and purification of infectious virus in high yield. J Virol Methods 8:123–136 [CrossRef]
    [Google Scholar]
  55. van Binnendijk R. S., van der Heijden R. W., van Amerongen G., UytdeHaag F. G., Osterhaus A. D. 1994; Viral replication and development of specific immunity in macaques after infection with different measles virus strains. J Infect Dis 170:443–448 [CrossRef]
    [Google Scholar]
  56. Vicente-Manzanares M., Sanchez-Madrid F. 2004; Role of the cytoskeleton during leukocyte responses. Nat Rev Immunol 4:110–122 [CrossRef]
    [Google Scholar]
  57. Vincent S., Gerlier D., Manie S. N. 2000; Measles virus assembly within membrane rafts. J Virol 74:9911–9915 [CrossRef]
    [Google Scholar]
  58. Weidmann A., Maisner A., Garten W., Seufert M., ter Meulen V., Schneider-Schaulies S. 2000; Proteolytic cleavage of the fusion protein but not membrane fusion is required for measles virus-induced immunosuppression in vitro. J Virol 74:1985–1993 [CrossRef]
    [Google Scholar]
  59. WHO 2007; Measles. WHO Fact Sheet no. 286: http://www.who.int/mediacentre/factsheets/fs286/en/
    [Google Scholar]
  60. Yanagi Y., Takeda M., Ohno S. 2006; Measles virus: cellular receptors, tropism and pathogenesis. J Gen Virol 87:2767–2779 [CrossRef]
    [Google Scholar]
  61. Zimmer G., Zimmer K. P., Trotz I., Herrler G. 2002; Vesicular stomatitis virus glycoprotein does not determine the site of virus release in polarized epithelial cells. J Virol 76:4103–4107 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83407-0
Loading
/content/journal/jgv/10.1099/vir.0.83407-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error