Cylindrical inclusion protein of potato virus A is associated with a subpopulation of particles isolated from infected plants Free

Abstract

Potato virus A (PVA) particles were purified by centrifugation through a 30 % sucrose cushion and the pellet (P1) was resuspended and sedimented through a 5–40 % sucrose gradient. The gradient separation resulted in two different virus particle populations: a virus fraction (F) that formed a band in the gradient and one that formed a pellet (P2) at the bottom of the gradient. All three preparations contained infectious particles that retained their integrity when visualized by electron microscopy (EM). Western blotting of the P1 particles revealed that the viral RNA helicase, cylindrical inclusion protein (CI), co-purified with virus particles. This result was confirmed with co-immunoprecipitation experiments. CI was detected in P2 particle preparations, whereas F particles were devoid of detectable amounts of CI. ATPase activity was detected in all three preparations with the greatest amount in P2. Results from immunogold-labelling EM experiments suggested that a fraction of the CI present in the preparations was localized to one end of the virion. Atomic force microscopy (AFM) studies showed that P1 and P2 contained intact particles, some of which had a protruding tip structure at one end, whilst F virions were less stable and mostly appeared as beaded structures under the conditions of AFM. The RNA of the particles in F was translated five to ten times more efficiently than RNA from P2 particles when these preparations were subjected to translation in wheat-germ extracts. The results are discussed in the context of a model for CI-mediated functions.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83406-0
2008-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/3/829.html?itemId=/content/journal/jgv/10.1099/vir.0.83406-0&mimeType=html&fmt=ahah

References

  1. Agranovsky A. A., Folimonova S. Y., Folimonov A. S., Denisenko O. N., Zinovkin R. A. 1997; The beet yellows closterovirus p65 homologue of HSP70 chaperones has ATPase activity associated with its conserved N-terminal domain but does not interact with unfolded protein chains. J Gen Virol 78:535–542
    [Google Scholar]
  2. Alzhanova D. V., Prokhnevsky A. I., Peremyslov V. V., Dolja V. V. 2007; Virion tails of beet yellows virus: coordinated assembly by three structural proteins. Virology 359:220–226 [CrossRef]
    [Google Scholar]
  3. Atabekov J. G., Rodionova N. P., Karpova O. V., Kozlovsky S. V., Poljakov V. Y. 2000; The movement protein-triggered in situ conversion of potato virus X virion RNA from a nontranslatable into a translatable form. Virology 271:259–263 [CrossRef]
    [Google Scholar]
  4. Atabekov J. G., Rodionova N. P., Karpova O. V., Kozlovsky S. V., Novikov V. K., Arkhipenko M. V. 2001; Translational activation of encapsidated potato virus X RNA by coat protein phosphorylation. Virology 286:466–474 [CrossRef]
    [Google Scholar]
  5. Browning I. A., Burns R., George E. L., Darling M. 1995; Development and evaluation of ELISA assays incorporating monoclonal antibodies for the detection of potato A potyvirus. EPPO Bull 25:259–268 [CrossRef]
    [Google Scholar]
  6. Carrington J. C., Jensen P. E., Schaad M. C. 1998; Genetic evidence for an essential role for potyvirus CI protein in cell-to-cell movement. Plant J 14:393–400 [CrossRef]
    [Google Scholar]
  7. Choi I. R., Stenger D. C., French R. 2000; Multiple interactions among proteins encoded by the mite-transmitted wheat streak mosaic tritimovirus. Virology 267:185–198 [CrossRef]
    [Google Scholar]
  8. Eagles R. M., Balmori-Melián E., Beck D. L., Gardner R. C., Forster R. L. S. 1994; Characterization of NTPase, RNA-binding and RNA helicase activities of the cytoplasmic inclusion protein of tamarillo mosaic potyvirus. Eur J Biochem 224:677–684 [CrossRef]
    [Google Scholar]
  9. Edwardson J. R. 1992; Inclusion bodies. Arch Virol Suppl 5:25–30
    [Google Scholar]
  10. Fairman M. E., Maroney P. A., Wang W., Bowers H. A., Gollnick P., Nilsen T. W., Jankowsky E. 2004; Protein displacement by DExH/D “RNA helicases” without duplex unwinding. Science 304:730–734 [CrossRef]
    [Google Scholar]
  11. Fernández A., García J. A. 1996; The RNA helicase CI from plum pox potyvirus has two regions involved in binding to RNA. FEBS Lett 388:206–210 [CrossRef]
    [Google Scholar]
  12. Fernández A., Lain S., García J. A. 1995; RNA helicase activity of the plum pox potyvirus CI protein expressed in Escherichia coli . Mapping of an RNA binding domain. Nucleic Acids Res 23:1327–1332 [CrossRef]
    [Google Scholar]
  13. Fernández A., Guo H. S., Sáenz P., Simón-Buela L., , Gómez de Cedrón M., García J. A. 1997; The motif V of plum pox potyvirus CI RNA helicase is involved in NTP hydrolysis and is essential for virus RNA replication. Nucleic Acids Res 25:4474–4480 [CrossRef]
    [Google Scholar]
  14. Gómez de Cedrón M., Osaba L., López L., García J. A. 2006; Genetic analysis of the function of the plum pox virus CI RNA helicase in virus movement. Virus Res 116:136–145 [CrossRef]
    [Google Scholar]
  15. Guo D., Rajamäki M. L., Saarma M., Valkonen J. P. 2001; Towards a protein interaction map of potyviruses: protein interaction matrixes of two potyviruses based on the yeast two-hybrid system. J Gen Virol 82:935–939
    [Google Scholar]
  16. Hammond J. 1992; Potyvirus serology, sequences and biology. Arch Virol Suppl 5:123–138
    [Google Scholar]
  17. Ivanov K. I., Puustinen P., Gabrenaite R., Vihinen H., Rönnstrand L., Valmu L., Kalkkinen N., Mäkinen K. 2003; Phosphorylation of the potyvirus capsid protein by plant protein kinase CK2 and its relevance for virus infection. Plant Cell 15:2124–2139 [CrossRef]
    [Google Scholar]
  18. Jankowsky E., Gross C. H., Shuman S., Pyle A. M. 2001; Active disruption of an RNA–protein interaction by a DExH/D RNA helicase. Science 291:121–125 [CrossRef]
    [Google Scholar]
  19. Kalinina N. O., Fedorkin O. N., Samuilova O. V., Maiss E., Korpela T., Morozov S. Y., Atabekov J. G. 1996; Expression and biochemical analyses of the recombinant potato virus X 25K movement protein. FEBS Lett 397:75–78 [CrossRef]
    [Google Scholar]
  20. Kalinina N. O., Rakitina D. V., Solovyev A. G., Schiemann J., Morozov S. Y. 2002; RNA helicase activity of the plant virus movement proteins encoded by the first gene of the triple gene block. Virology 296:321–329 [CrossRef]
    [Google Scholar]
  21. Karpova O. V., Zayakina O. V., Arkhipenko M. V., Sheval E. V., Kiselyova O. I., Poljakov V. Y., Yaminsky I. V., Rodionova N. P., Atabekov J. G. 2006; Potato virus X RNA-mediated assembly of single-tailed ternary ‘coat protein–RNA–movement protein’ complexes. J Gen Virol 87:2731–2740 [CrossRef]
    [Google Scholar]
  22. Kelloniemi J., Mäkinen K., Valkonen J. P. T. 2006; S-COMT and GFP, unlike sorcin, are successfully expressed from a potyvirus-based gene vector in plants. Biochimie 88:505–513 [CrossRef]
    [Google Scholar]
  23. Kiselyova O. I., Yaminsky I. V., Karpova O. V., Rodionova N. P., Kozlovsky S. V., Arkhipenko M. V., Atabekov J. G. 2003; AFM study of potato virus X disassembly induced by movement protein. J Mol Biol 332:321–325 [CrossRef]
    [Google Scholar]
  24. Laín S., Riechmann J. L., García J. A. 1990; RNA helicase: a novel activity associated with a protein encoded by a positive strand RNA virus. Nucleic Acids Res 18:7003–7006 [CrossRef]
    [Google Scholar]
  25. Laín S., Martín M. T., Riechmann J. L., García J. A. 1991; Novel catalytic activity associated with positive-strand RNA virus infection: nucleic acid-stimulated ATPase activity of the plum pox potyvirus helicase protein. J Virol 65:1–6
    [Google Scholar]
  26. Langenberg W. G. 1986; Virus protein association with cylindrical inclusions of two viruses that infect wheat. J Gen Virol 67:1161–1168 [CrossRef]
    [Google Scholar]
  27. Langenberg W. G. 1993; Structural proteins of three viruses in the Potyviridae adhere only to their homologous cylindrical inclusions in mixed infections. J Struct Biol 110:188–195 [CrossRef]
    [Google Scholar]
  28. Lawson R. H., Hearon S. S. 1971; The association of pinwheel inclusions with plasmodesmata. Virology 44:454–456 [CrossRef]
    [Google Scholar]
  29. López L., Urzainqui A., Domínguez E., García J. A. 2001; Identification of an N-terminal domain of the plum pox potyvirus CI RNA helicase involved in self-interaction in a yeast two-hybrid system. J Gen Virol 82:677–686
    [Google Scholar]
  30. Merits A., Guo D., Saarma M. 1998; VPg, coat protein and five non-structural proteins of potato A potyvirus bind RNA in a sequence-unspecific manner. J Gen Virol 79:3123–3127
    [Google Scholar]
  31. Peremyslov V. V., Hagiwara Y., Dolja V. V. 1999; HSP70 homolog functions in cell-to-cell movement of a plant virus. Proc Natl Acad Sci U S A 96:14771–14776 [CrossRef]
    [Google Scholar]
  32. Peremyslov V. V., Andreev I. A., Prokhnevsky A. I., Duncan G. H., Taliansky M. E., Dolja V. V. 2004; Complex molecular architecture of beet yellows virus particles. Proc Natl Acad Sci U S A 101:5030–5035 [CrossRef]
    [Google Scholar]
  33. Prokhnevsky A. I., Peremyslov V. V., Dolja V. V. 2005; Actin cytoskeleton is involved in targeting of a viral Hsp70 homolog to the cell periphery. J Virol 79:14421–14428 [CrossRef]
    [Google Scholar]
  34. Puurand U., Mäkinen K., Paulin L., Saarma M. 1994; The nucleotide sequence of potato virus A genomic RNA and its sequence similarities with other potyviruses. J Gen Virol 75:457–461 [CrossRef]
    [Google Scholar]
  35. Puustinen P., Rajamäki M. L., Ivanov K. I., Valkonen J. P., Mäkinen K. 2002; Detection of the potyviral genome-linked protein VPg in virions and its phosphorylation by host kinases. J Virol 76:12703–12711 [CrossRef]
    [Google Scholar]
  36. Rakitina D. V., Kantidze O. L., Leshchiner A. D., Solovyev A. G., Novikov V. K., Morozov S. Y., Kalinina N. O. 2005; Coat proteins of two filamentous plant viruses display NTPase activity in vitro. FEBS Lett 579:4955–4960 [CrossRef]
    [Google Scholar]
  37. Riedel D., Lesemann D. E., Maiss E. 1998; Ultrastructural localization of nonstructural and coat proteins of 19 potyviruses using antisera to bacterially expressed proteins of plum pox potyvirus. Arch Virol 143:2133–2158 [CrossRef]
    [Google Scholar]
  38. Roberts I. M., Wang D., Findlay K., Maule A. J. 1998; Ultrastructural and temporal observations of the potyvirus cylindrical inclusions (Cls) show that the Cl protein acts transiently in aiding virus movement. Virology 245:173–181 [CrossRef]
    [Google Scholar]
  39. Rodionova N. P., Karpova O. V., Kozlovsky S. V., Zayakina O. V., Arkhipenko M. V., Atabekov J. G. 2003; Linear remodeling of helical virus by movement protein binding. J Mol Biol 333:565–572 [CrossRef]
    [Google Scholar]
  40. Rodríguez-Cerezo E., Findlay K., Shaw J. G., Lomonossoff G. P., Qiu S. G., Linstead P., Shanks M., Risco C. 1997; The coat and cylindrical inclusion proteins of a potyvirus are associated with connections between plant cells. Virology 236:296–306 [CrossRef]
    [Google Scholar]
  41. Shukla D. D., Strike P. M., Tracy S. L., Gough K. H., Ward C. W. 1988; The N and C termini of the coat proteins of potyviruses are surface-located and the N terminus contains the major virus-specific epitopes. J Gen Virol 69:1497–1508 [CrossRef]
    [Google Scholar]
  42. Torrance L., Andreev I. A., Gabrenaite-Verhovskaya R., Cowan G., Mäkinen K., Taliansky M. E. 2006; An unusual structure at one end of potato potyvirus particles. J Mol Biol 357:1–8 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83406-0
Loading
/content/journal/jgv/10.1099/vir.0.83406-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed