1887

Abstract

The influenza virus polymerase is a heterotrimer formed by the PB1, PB2 and PA subunits and is responsible for virus transcription and replication. We have expressed the virus polymerase complex by co-transfection of the subunit cDNAs, one of which was tandem affinity purification (TAP)-tagged, into human cells. The intracellular polymerase complexes were purified by the TAP approach, involving two affinity chromatography steps, IgG–Sepharose and calmodulin–agarose. Gel-filtration analysis indicated that, although most of the purified polymerase behaved as a heterotrimer, a significant proportion of the purified material migrated as polymerase dimers, trimers and higher oligomers. Co-purification of polymerase complexes alternatively tagged in the same subunit confirmed that the polymerase complex might form oligomers intracellularly. The implications of this observation for virus infection are discussed.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83387-0
2008-02-01
2019-11-21
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/2/520.html?itemId=/content/journal/jgv/10.1099/vir.0.83387-0&mimeType=html&fmt=ahah

References

  1. Area, E., Martín-Benito, J., Gastaminza, P., Torreira, E., Valpuesta, J. M., Carrascosa, J. L. & Ortín, J. ( 2004; ). Three-dimensional structure of the influenza virus RNA polymerase: localization of subunit domains. Proc Natl Acad Sci U S A 101, 308–313.[CrossRef]
    [Google Scholar]
  2. Bouloy, M., Plotch, S. J. & Krug, R. M. ( 1978; ). Globin mRNAs are primers for the transcription of influenza viral RNA in vitro. Proc Natl Acad Sci U S A 75, 4886–4890.[CrossRef]
    [Google Scholar]
  3. Cevik, B., Smallwood, S. & Moyer, S. A. ( 2003; ). The L–L oligomerization domain resides at the very N-terminus of the sendai virus L RNA polymerase protein. Virology 313, 525–536.[CrossRef]
    [Google Scholar]
  4. Deng, T., Engelhardt, O. G., Thomas, B., Akoulitchev, A. V., Brownlee, G. G. & Fodor, E. ( 2006; ). The role of Ran binding protein 5 (RanBP5) in the nuclear import and assembly of the influenza virus RNA polymerase complex. J Virol 80, 11911–11919.[CrossRef]
    [Google Scholar]
  5. Detjen, B. M., St Angelo, C., Katze, M. G. & Krug, R. M. ( 1987; ). The three influenza virus polymerase (P) proteins not associated with viral nucleocapsids in the infected cell are in the form of a complex. J Virol 61, 16–22.
    [Google Scholar]
  6. Digard, P., Blok, V. C. & Inglis, S. C. ( 1989; ). Complex formation between influenza virus polymerase proteins expressed in Xenopus oocytes. Virology 171, 162–169.[CrossRef]
    [Google Scholar]
  7. Elton, D., Digard, P., Tiley, L. & Ortín, J. ( 2005; ). Structure and function of the influenza virus RNP. In Current Topics in Influenza Virology, pp. 1–92. Edited by Y. Kawaoka. Norfolk: Horizon Scientific Press.
  8. Fodor, E., Crow, M., Mingay, L. J., Deng, T., Sharps, J., Fechter, P. & Brownlee, G. G. ( 2002; ). A single amino acid mutation in the PA subunit of the influenza virus RNA polymerase inhibits endonucleolytic cleavage of capped RNAs. J Virol 76, 8989–9001.[CrossRef]
    [Google Scholar]
  9. Gastaminza, P., Perales, B., Falcón, A. M. & Ortín, J. ( 2003; ). Influenza virus mutants in the N-terminal region of PB2 protein are affected in virus RNA replication but not transcription. J Virol 76, 5098–5108.
    [Google Scholar]
  10. González, S. & Ortín, J. ( 1999; ). Characterization of the influenza virus PB1 protein binding to vRNA: two separate regions of the protein contribute to the interaction domain. J Virol 73, 631–637.
    [Google Scholar]
  11. Hara, K., Schmidt, F. I., Crow, M. & Brownlee, G. G. ( 2006; ). Amino acid residues in the N-terminal region of the PA subunit of influenza A virus RNA polymerase play a critical role in protein stability, endonuclease activity, cap binding, and virion RNA promoter binding. J Virol 80, 7789–7798.[CrossRef]
    [Google Scholar]
  12. Hay, A. J., Skehel, J. J. & McCauley, J. ( 1982; ). Characterization of influenza virus RNA complete transcripts. Virology 116, 517–522.[CrossRef]
    [Google Scholar]
  13. Klumpp, K., Ruigrok, R. W. & Baudin, F. ( 1997; ). Roles of the influenza virus polymerase and nucleoprotein in forming a functional RNP structure. EMBO J 16, 1248–1257.[CrossRef]
    [Google Scholar]
  14. Krug, R. M., Broni, B. A. & Bouloy, M. ( 1979; ). Are the 5′-ends of influenza viral mRNAs synthesized in vivo donated by host mRNAs? Cell 18, 329–334.[CrossRef]
    [Google Scholar]
  15. Lee, M. T., Bishop, K., Medcalf, L., Elton, D., Digard, P. & Tiley, L. ( 2002; ). Definition of the minimal viral components required for the initiation of unprimed RNA synthesis by influenza virus RNA polymerase. Nucleic Acids Res 30, 429–438.[CrossRef]
    [Google Scholar]
  16. Lyle, J. M., Bullitt, E., Bienz, K. & Kirkegaard, K. ( 2002; ). Visualization and functional analysis of RNA-dependent RNA polymerase lattices. Science 296, 2218–2222.[CrossRef]
    [Google Scholar]
  17. Martín-Benito, J., Area, E., Ortega, J., Llorca, O., Valpuesta, J. M., Carrascosa, J. L. & Ortín, J. ( 2001; ). Three dimensional reconstruction of a recombinant influenza virus ribonucleoprotein particle. EMBO Rep 2, 313–317.[CrossRef]
    [Google Scholar]
  18. Mayer, D., Molawi, K., Martinez-Sobrido, L., Ghanem, A., Thomas, S., Baginsky, S., Grossmann, J., Garcia-Sastre, A. & Schwemmle, M. ( 2007; ). Identification of cellular interaction partners of the influenza virus ribonucleoprotein complex and polymerase complex using proteomic-based approaches. J Proteome Res 6, 672–682.[CrossRef]
    [Google Scholar]
  19. Momose, F., Naito, T., Yano, K., Sugimoto, S., Morikawa, Y. & Nagata, K. ( 2002; ). Identification of Hsp90 as a stimulatory host factor involved in influenza virus RNA synthesis. J Biol Chem 277, 45306–45314.[CrossRef]
    [Google Scholar]
  20. Naito, T., Momose, F., Kawaguchi, A. & Nagata, K. ( 2007; ). Involvement of Hsp90 in assembly and nuclear import of influenza virus RNA polymerase subunits. J Virol 81, 1339–1349.[CrossRef]
    [Google Scholar]
  21. Neumann, G., Brownlee, G. G., Fodor, E. & Kawaoka, Y. ( 2004; ). Orthomyxovirus replication, transcription, and polyadenylation. Curr Top Microbiol Immunol 283, 121–143.
    [Google Scholar]
  22. Ortega, J., Martín-Benito, J., Zürcher, T., Valpuesta, J. M., Carrascosa, J. L. & Ortín, J. ( 2000; ). Ultrastructural and functional analyses of recombinant influenza virus ribonucleoproteins suggest dimerization of nucleoprotein during virus amplification. J Virol 74, 156–163.[CrossRef]
    [Google Scholar]
  23. Ortin, J. & Parra, F. ( 2006; ). Structure and function of RNA replication. Annu Rev Microbiol 60, 305–326.[CrossRef]
    [Google Scholar]
  24. Palese, P. & Shaw, M. ( 2006; ). Orthomyxoviridae: the viruses and their replication. In Fields Virology, 5th edn, pp. 1647–1689. Edited by D. M. Knipe & P. M. Howley. Philadelphia: Lippincott Williams & Wilkins.
  25. Poon, L. L. M., Pritlove, D. C., Fodor, E. & Brownlee, G. G. ( 1999; ). Direct evidence that the poly(A) tail of influenza A virus mRNA is synthesized by reiterative copying of a U track in the virion RNA template. J Virol 73, 3473–3476.
    [Google Scholar]
  26. Regan, J. F., Liang, Y. & Parslow, T. G. ( 2006; ). Defective assembly of influenza A virus due to a mutation in the polymerase subunit PA. J Virol 80, 252–261.[CrossRef]
    [Google Scholar]
  27. Rigaut, G., Shevchenko, A., Rutz, B., Wilm, M., Mann, M. & Seraphin, B. ( 1999; ). A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol 17, 1030–1032.[CrossRef]
    [Google Scholar]
  28. Robertson, J. S., Schubert, M. & Lazzarini, R. A. ( 1981; ). Polyadenylation sites for influenza mRNA. J Virol 38, 157–163.
    [Google Scholar]
  29. Smallwood, S., Cevik, B. & Moyer, S. A. ( 2002; ). Intragenic complementation and oligomerization of the L subunit of the sendai virus RNA polymerase. Virology 304, 235–245.[CrossRef]
    [Google Scholar]
  30. Tiley, L. S., Hagen, M., Mathews, J. T. & Krystal, M. ( 1994; ). Sequence-specific binding of the influenza virus RNA polymerase to sequences located at the 5′-end of the viral RNAs. J Virol 68, 5108–5116.
    [Google Scholar]
  31. Torreira, E., Schoehn, G., Fernández, Y., Jorba, N., Ruigrok, R. W., Cusack, S., Ortin, J. & Llorca, O. ( 2007; ). Three-dimensional model for the isolated recombinant influenza virus polymerase heterotrimer. Nucleic Acids Res 35, 3774– –3783.[CrossRef]
    [Google Scholar]
  32. Villacé, P., Marión, R. M. & Ortín, J. ( 2004; ). The composition of Staufen-containing RNA granules from human cells indicate a role in the regulated transport and translation of messenger RNAs. Nucleic Acids Res 32, 2411–2420.[CrossRef]
    [Google Scholar]
  33. Wang, Q. M., Hockman, M. A., Staschke, K., Johnson, R. B., Case, K. A., Lu, J., Parsons, S., Zhang, F., Rathnachalam, R. & other authors ( 2002; ). Oligomerization and cooperative RNA synthesis activity of hepatitis C virus RNA-dependent RNA polymerase. J Virol 76, 3865–3872.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83387-0
Loading
/content/journal/jgv/10.1099/vir.0.83387-0
Loading

Data & Media loading...

Supplements

vol. , part 2, pp. 520 - 524

Control of the potential proteolysis of the influenza polymerase [PDF](72 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error