1887

Abstract

Replication of many picornaviruses is inhibited by low concentrations of guanidine. Guanidine-resistant mutants are readily isolated and the mutations map to the coding region for the 2C protein. Using replication assays it has been determined previously that guanidine blocks the initiation of negative-strand synthesis. We have now examined the dynamics of RNA replication, measured by quantitative RT-PCR, within cells infected with either swine vesicular disease virus (an enterovirus) or foot-and-mouth disease virus as regulated by the presence or absence of guanidine. Following the removal of guanidine from the infected cells, RNA replication occurs after a significant lag phase. This restoration of RNA synthesis requires protein synthesis. Viral RNA can be maintained for at least 72 h within cells in the absence of apparent replication but guanidine-resistant virus can become predominant. Amino acid substitutions within the 2C protein that confer guanidine resistance to swine vesicular disease virus and foot-and-mouth disease virus have been identified. Even when RNA synthesis is well established, the addition of guanidine has a major impact on the level of RNA replication. Thus, the guanidine-sensitive step in RNA synthesis is important throughout the virus life cycle in cells.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83385-0
2008-02-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/2/485.html?itemId=/content/journal/jgv/10.1099/vir.0.83385-0&mimeType=html&fmt=ahah

References

  1. Baltera R. F. Jr, Tershak D. R. 1989; Guanidine-resistant mutants of poliovirus have distinct mutations in peptide 2C. J Virol 63:4441–4444
    [Google Scholar]
  2. Banerjee R., Echeverri A., Dasgupta A. 1997; Poliovirus-encoded 2C polypeptide specifically binds to the 3′-terminal sequences of viral negative-strand RNA. J Virol 71:9570–9578
    [Google Scholar]
  3. Barton D. J., Flanegan J. B. 1997; Synchronous replication of poliovirus RNA: initiation of negative-strand RNA synthesis requires the guanidine-inhibited activity of protein 2C. J Virol 71:8482–8489
    [Google Scholar]
  4. Barton D. J., Black E. P., Flanegan J. B. 1995; Complete replication of poliovirus in vitro: preinitiation RNA replication complexes require soluble cellular factors for the synthesis of VPg-linked RNA. J Virol 69:5516–5527
    [Google Scholar]
  5. Barton D. J., Morasco B. J., Flanegan J. B. 1999; Translating ribosomes inhibit poliovirus negative-strand RNA synthesis. J Virol 73:10104–10112
    [Google Scholar]
  6. Egger D., Bienz K. 2005; Intracellular location and translocation of silent and active poliovirus replication complexes. J Gen Virol 86:707–718 [CrossRef]
    [Google Scholar]
  7. Egger D., Teterina N., Ehrenfeld E., Bienz K. 2000; Formation of the poliovirus replication complex requires coupled viral translation, vesicle production, and viral RNA synthesis. J Virol 74:6570–6580 [CrossRef]
    [Google Scholar]
  8. Gamarnik A. V., Andino R. 1998; Switch from translation to RNA replication in a positive-stranded RNA virus. Genes Dev 12:2293–2304 [CrossRef]
    [Google Scholar]
  9. Gorbalenya A. E., Koonin E. V., Wolf Y. I. 1990; A new superfamily of putative NTP-binding domains encoded by genomes of small DNA and RNA viruses. FEBS Lett 262:145–148 [CrossRef]
    [Google Scholar]
  10. Graves J. H. 1973; Serological relationship of swine vesicular disease virus and coxsackie B5 virus. Nature 245:314–315 [CrossRef]
    [Google Scholar]
  11. Inoue T., Suzuki T., Sekiguchi K. 1989; The complete nucleotide sequence of swine vesicular disease virus. J Gen Virol 70:919–934 [CrossRef]
    [Google Scholar]
  12. Klein M., Hadaschik D., Zimmermann H., Eggers H. J., Nelsen-Salz B. 2000; The picornavirus replication inhibitors HBB and guanidine in the echovirus-9 system: the significance of viral protein 2C. J Gen Virol 81:895–901
    [Google Scholar]
  13. Lyons T., Murray K. E., Roberts A. W., Barton D. J. 2001; Poliovirus 5′-terminal cloverleaf RNA is required in cis for VPg uridylylation and the initiation of negative-strand RNA synthesis. J Virol 75:10696–10708 [CrossRef]
    [Google Scholar]
  14. Paul A. 2002; Possible unifying mechanism of picornavirus genome replication. In Molecular Biology of Picornaviruses pp 227–246Edited by Semler B. L., Wimmer E. Washington, DC: ASM Press;
    [Google Scholar]
  15. Pfister T., Wimmer E. 1999; Characterization of the nucleoside triphosphatase activity of poliovirus protein 2C reveals a mechanism by which guanidine inhibits poliovirus replication. J Biol Chem 274:6992–7001 [CrossRef]
    [Google Scholar]
  16. Pincus S. E., Wimmer E. 1986; Production of guanidine-resistant and -dependent poliovirus mutants from cloned cDNA: mutations in polypeptide 2C are directly responsible for altered guanidine sensitivity. J Virol 60:793–796
    [Google Scholar]
  17. Pincus S. E., Diamond D. C., Emini E. A., Wimmer E. 1986; Guanidine-selected mutants of poliovirus: mapping of point mutations to polypeptide 2C. J Virol 57:638–646
    [Google Scholar]
  18. Reid S. M., Grierson S. S., Ferris N. P., Hutchings G. H., Alexandersen S. 2003; Evaluation of automated RT-PCR to accelerate the laboratory diagnosis of foot-and-mouth disease virus. J Virol Methods 107:129–139 [CrossRef]
    [Google Scholar]
  19. Reid S. M., Ferris N. P., Hutchings G. H., King D. P., Alexandersen S. 2004; Evaluation of real-time reverse transcription polymerase chain reaction assays for the detection of swine vesicular disease virus. J Virol Methods 116:169–176 [CrossRef]
    [Google Scholar]
  20. Rodriguez P. L., Carrasco L. 1995; Poliovirus protein 2C contains two regions involved in RNA binding activity. J Biol Chem 270:10105–10112 [CrossRef]
    [Google Scholar]
  21. Saunders K., King A. M. Q. 1982; Guanidine-resistant mutants of aphthovirus induce the synthesis of an altered nonstructural polypeptide, P34. J Virol 42:389–394
    [Google Scholar]
  22. Saunders K., King A. M. Q., McCahon D., Newman J. W. I., Slade W. R., Forss S. 1985; Recombination and oligonucleotide analysis of guanidine-resistant foot-and-mouth disease virus mutants. J Virol 56:921–929
    [Google Scholar]
  23. Tang W. F., Yang S. Y., Wu B. W., Jheng J. R., Chen Y. L., Shih C. H., Lin K. H., Lai H. C., Tang P., Horng J. T. 2007; Reticulon 3 binds the 2C protein of enterovirus 71 and is required for viral replication. J Biol Chem 282:5888–5898 [CrossRef]
    [Google Scholar]
  24. Teterina N. L., Gorbalenya A. E., Egger D., Bienz K., Ehrenfeld E. 1997; Poliovirus 2C protein determinants of membrane binding and rearrangements in mammalian cells. J Virol 71:8962–8972
    [Google Scholar]
  25. Teterina N. L., Levenson E., Rinaudo M. S., Egger D., Bienz K., Gorbalenya A. E., Ehrenfeld E. 2006; Evidence for functional protein interactions required for poliovirus RNA replication. J Virol 80:5327–5337 [CrossRef]
    [Google Scholar]
  26. Tolskaya E. A., Romanova L. I., Kolesnikova M. S., Gmyl A. P., Gorbalenya A. E., Agol V. I. 1994; Genetic studies on the poliovirus 2C protein, an NTPase. A plausible mechanism of guanidine effect on the 2C function and evidence for the importance of 2C oligomerization. J Mol Biol 236:1310–1323 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83385-0
Loading
/content/journal/jgv/10.1099/vir.0.83385-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error