1887

Abstract

The family comprises positive-strand RNA viral pathogens of humans and livestock with few treatment options. We have previously shown that azathioprine (AZA) has activity against bovine viral diarrhea virus (BVDV). While the mechanism of inhibition is unknown, AZA and related thiopurine nucleoside analogues have been used as immunosuppressants for decades and both AZA metabolites and cellular genes involved in AZA metabolism have been extensively characterized. Here, we show that only certain riboside metabolites have antiviral activity and identify the most potent known antiviral AZA metabolite as 6-methylmercaptopurine riboside (6MMPr). The antiviral activity of 6MMPr is antagonized by adenosine, and is specific to BVDV and not to the related yellow fever virus. An essential step in the conversion of AZA to 6MMPr is the addition of a methyl group onto the sulfur atom attached to position six of the purine ring. Intracellularly, the methyl group is added by thiopurine methyltransferase (TPMT), an -adenosyl methionine-dependent methyltransferase. Either chemically bypassing or inhibiting TPMT modulates antiviral activity of AZA metabolites. TPMT exists in several variants with varying levels of activity and since 6MMPr is a potent antiviral, the antiviral activity of AZA may be modulated by host genetics.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83381-0
2008-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/4/1000.html?itemId=/content/journal/jgv/10.1099/vir.0.83381-0&mimeType=html&fmt=ahah

References

  1. Bahr M. J., Beckermann J. G., Rifai K., Gehrmann L., Rosenau J., Klempnauer J., Strassburg C. P., Manns M. P. 2005; Retrospective analysis of the impact of immunosuppression on the course of recurrent hepatitis C after liver transplantation. Transplant Proc 37:1703–1704 [CrossRef]
    [Google Scholar]
  2. Berridge M. V., Tan A. S. 1993; Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction. Arch Biochem Biophys 303:474–482 [CrossRef]
    [Google Scholar]
  3. Bressanelli S., Tomei L., Rey F. A., De Francesco R. 2002; Structural analysis of the hepatitis C virus RNA polymerase in complex with ribonucleotides. J Virol 76:3482–3492 [CrossRef]
    [Google Scholar]
  4. Butcher S. J., Grimes J. M., Makeyev E. V., Bamford D. H., Stuart D. I. 2001; A mechanism for initiating RNA-dependent RNA polymerization. Nature 410:235–240 [CrossRef]
    [Google Scholar]
  5. Choi K. H., Groarke J. M., Young D. C., Kuhn R. J., Smith J. L., Pevear D. C., Rossmann M. G. 2004; The structure of the RNA-dependent RNA polymerase from bovine viral diarrhea virus establishes the role of GTP in de novo initiation. Proc Natl Acad Sci U S A 101:4425–4430 [CrossRef]
    [Google Scholar]
  6. Coulthard S. A., Hogarth L. A., Little M., Matheson E. C., Redfern C. P., Minto L., Hall A. G. 2002; The effect of thiopurine methyltransferase expression on sensitivity to thiopurine drugs. Mol Pharmacol 62:102–109 [CrossRef]
    [Google Scholar]
  7. D'Abramo C. M., Cellai L., Gotte M. 2004; Excision of incorporated nucleotide analogue chain-terminators can diminish their inhibitory effects on viral RNA-dependent RNA polymerases. J Mol Biol 337:1–14 [CrossRef]
    [Google Scholar]
  8. Dervieux T., Chu Y., Su Y., Pui C. H., Evans W. E., Relling M. V. 2002; HPLC determination of thiopurine nucleosides and nucleotides in vivo in lymphoblasts following mercaptopurine therapy. Clin Chem 48:61–68
    [Google Scholar]
  9. Dervieux T., Meyer G., Barham R., Matsutani M., Barry M., Boulieu R., Neri B., Seidman E. 2005; Liquid chromatography-tandem mass spectrometry analysis of erythrocyte thiopurine nucleotides and effect of thiopurine methyltransferase gene variants on these metabolites in patients receiving azathioprine/6-mercaptopurine therapy. Clin Chem 51:2074–2084 [CrossRef]
    [Google Scholar]
  10. Elion G. B. 1989; Nobel Lecture. The purine path to chemotherapy. Biosci Rep 9:509–529 [CrossRef]
    [Google Scholar]
  11. Fotoohi A. K., Lindqvist M., Peterson C., Albertioni F. 2006a; Involvement of the concentrative nucleoside transporter 3 and equilibrative nucleoside transporter 2 in the resistance of T-lymphoblastic cell lines to thiopurines. Biochem Biophys Res Commun 343:208–215 [CrossRef]
    [Google Scholar]
  12. Fotoohi A. K., Wrabel A., Moshfegh A., Peterson C., Albertioni F. 2006b; Molecular mechanisms underlying the enhanced sensitivity of thiopurine-resistant T-lymphoblastic cell lines to methyl mercaptopurineriboside. Biochem Pharmacol 72:816–823 [CrossRef]
    [Google Scholar]
  13. Gisbert J. P., Luna M., Mate J., Gonzalez-Guijarro L., Cara C., Pajares J. M. 2006; Choice of azathioprine or 6-mercaptopurine dose based on thiopurine methyltransferase (TPMT) activity to avoid myelosuppression. A prospective study. Hepatogastroenterology 53:399–404
    [Google Scholar]
  14. Graci J. D., Cameron C. E. 2002; Quasispecies, error catastrophe, and the antiviral activity of ribavirin. Virology 298:175–180 [CrossRef]
    [Google Scholar]
  15. Houe H. 1999; Epidemiological features and economical importance of bovine virus diarrhoea virus (BVDV) infections. Vet Microbiol 64:89–107 [CrossRef]
    [Google Scholar]
  16. Hunt J., Gordon F. D., Lewis W. D., Pomfret E., Pomposelli J. J., Jenkins R. L., Khettry U. 2001; Histological recurrence and progression of hepatitis C after orthotopic liver transplantation: influence of immunosuppressive regimens. Liver Transpl 7:1056–1063 [CrossRef]
    [Google Scholar]
  17. Ikeda M., Yi M., Li K., Lemon S. M. 2002; Selectable subgenomic and genome-length dicistronic RNAs derived from an infectious molecular clone of the HCV-N strain of hepatitis C virus replicate efficiently in cultured Huh7 cells. J Virol 76:2997–3006 [CrossRef]
    [Google Scholar]
  18. Jones C. T., Patkar C. G., Kuhn R. J. 2005; Construction and applications of yellow fever virus replicons. Virology 331:247–259 [CrossRef]
    [Google Scholar]
  19. Koh Y. H., Shim J. H., Wu J. Z., Zhong W., Hong Z., Girardet J. L. 2005; Design, synthesis, and antiviral activity of adenosine 5′-phosphonate analogues as chain terminators against hepatitis C virus. J Med Chem 48:2867–2875 [CrossRef]
    [Google Scholar]
  20. Koontz J. W., Wicks W. D. 1977; Comparison of the effects of 6-thio- and 6-methylthiopurine ribonucleoside cyclic monophosphates with their corresponding nucleosides on the growth of rat hepatoma cells. Cancer Res 37:651–657
    [Google Scholar]
  21. Kornberg A., Kupper B., Tannapfel A., Hommann M., Scheele J. 2005; Impact of mycophenolate mofetil versus azathioprine on early recurrence of hepatitis C after liver transplantation. Int Immunopharmacol 5:107–115 [CrossRef]
    [Google Scholar]
  22. Lavanchy D., Purcell R. H., Hollinger F. B., Howard C., Alberti A., Kew M. C., Dusheiko G. M. 1999; Global surveillance and control of hepatitis C. Report of a WHO Consultation organized in collaboration with the Viral Hepatitis Prevention Board, Antwerp, Belgium. J Viral Hepat 6:35–47 [CrossRef]
    [Google Scholar]
  23. Ling Y. H., Chan J. Y., Beattie K. L., Nelson J. A. 1992; Consequences of 6-thioguanine incorporation into DNA on polymerase, ligase, and endonuclease reactions. Mol Pharmacol 42:802–807
    [Google Scholar]
  24. Mackenzie J. S., Gubler D. J., Petersen L. R. 2004; Emerging flaviviruses: the spread and resurgence of Japanese encephalitis, West Nile and dengue viruses. Nat Med 10:S98–S109 [CrossRef]
    [Google Scholar]
  25. Madin S. H., Darby N. B. Jr 1958; Established kidney cell lines of normal adult bovine and ovine origin. Proc Soc Exp Biol Med 98:574–576 [CrossRef]
    [Google Scholar]
  26. Mendez E., Ruggli N., Collett M. S., Rice C. M. 1998; Infectious bovine viral diarrhea virus (strain NADL) RNA from stable cDNA clones: a cellular insert determines NS3 production and viral cytopathogenicity. J Virol 72:4737–4745
    [Google Scholar]
  27. Otterness D., Szumlanski C., Lennard L., Klemetsdal B., Aarbakke J., Park-Hah J. O., Iven H., Schmiegelow K., Branum E. other authors 1997; Human thiopurine methyltransferase pharmacogenetics: gene sequence polymorphisms. Clin Pharmacol Ther 62:60–73 [CrossRef]
    [Google Scholar]
  28. Pawlotsky J. M. 2003; Mechanisms of antiviral treatment efficacy and failure in chronic hepatitis C. Antiviral Res 59:1–11 [CrossRef]
    [Google Scholar]
  29. Samonakis D. N., Triantos C. K., Thalheimer U., Quaglia A., Leandro G., Teixeira R., Papatheodoridis G. V., Sabin C. A., Rolando N. other authors 2005; Immunosuppression and donor age with respect to severity of HCV recurrence after liver transplantation. Liver Transpl 11:386–395 [CrossRef]
    [Google Scholar]
  30. Stangl J. R., Carroll K. L., Illichmann M., Striker R. 2004; Effect of antimetabolite immunosuppressants on Flaviviridae , including hepatitis C virus. Transplantation 77:562–567 [CrossRef]
    [Google Scholar]
  31. Stet E. H., De Abreu R. A., Bokkerink J. P., Blom H. J., Lambooy L. H., Vogels-Mentink T. M., de Graaf-Hess A. C., van Raay-Selten B., Trijbels F. J. 1994; Decrease in S -adenosylmethionine synthesis by 6-mercaptopurine and methylmercaptopurine ribonucleoside in Molt F4 human malignant lymphoblasts. Biochem J 304:163–168
    [Google Scholar]
  32. Szumlanski C. L., Weinshilboum R. M. 1995; Sulphasalazine inhibition of thiopurine methyltransferase: possible mechanism for interaction with 6-mercaptopurine and azathioprine. Br J Clin Pharmacol 39:456–459 [CrossRef]
    [Google Scholar]
  33. Tai H. L., Krynetski E. Y., Schuetz E. G., Yanishevski Y., Evans W. E. 1997; Enhanced proteolysis of thiopurine S -methyltransferase (TPMT) encoded by mutant alleles in humans ( TPMT*3A , TPMT*2 ): mechanisms for the genetic polymorphism of TPMT activity. Proc Natl Acad Sci U S A 94:6444–6449 [CrossRef]
    [Google Scholar]
  34. Vassilev V. B., Donis R. O. 2000; Bovine viral diarrhea virus induced apoptosis correlates with increased intracellular viral RNA accumulation. Virus Res 69:95–107 [CrossRef]
    [Google Scholar]
  35. Vogt M. H., Stet E. H., De Abreu R. A., Bokkerink J. P., Lambooy L. H., Trijbels F. J. 1993; The importance of methylthio-IMP for methylmercaptopurine ribonucleoside (Me-MPR) cytotoxicity in Molt F4 human malignant T-lymphoblasts. Biochim Biophys Acta 1181189–194 [CrossRef]
    [Google Scholar]
  36. Wang L., Weinshilboum R. 2006; Thiopurine S -methyltransferase pharmacogenetics: insights, challenges and future directions. Oncogene 25:1629–1638 [CrossRef]
    [Google Scholar]
  37. Wang L., Sullivan W., Toft D., Weinshilboum R. 2003; Thiopurine S -methyltransferase pharmacogenetics: chaperone protein association and allozyme degradation. Pharmacogenetics 13:555–564 [CrossRef]
    [Google Scholar]
  38. Woodson L. C., Ames M. M., Selassie C. D., Hansch C., Weinshilboum R. M. 1983; Thiopurine methyltransferase. Aromatic thiol substrates and inhibition by benzoic acid derivatives. Mol Pharmacol 24:471–478
    [Google Scholar]
  39. Yi M., Bodola F., Lemon S. M. 2002; Subgenomic hepatitis C virus replicons inducing expression of a secreted enzymatic reporter protein. Virology 304:197–210 [CrossRef]
    [Google Scholar]
  40. Zhong W., Uss A. S., Ferrari E., Lau J. Y., Hong Z. 2000; De novo initiation of RNA synthesis by hepatitis C virus nonstructural protein 5B polymerase. J Virol 74:2017–2022 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83381-0
Loading
/content/journal/jgv/10.1099/vir.0.83381-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error