1887

Abstract

Little is known about the ecology and evolution of avian influenza in the natural environment, despite how these affect the potential for transmission. Most work has focused on characterizing viruses isolated from hosts such as waterfowl, and there have also been several instances of isolation and detection from abiotic sources such as water and ice. We used RT-PCR to amplify and characterize the influenza virus sequences present in sediments of ponds that are used heavily by waterfowl. The detection rate of influenza virus was high (>50 %). Characterization of the viruses present by sequencing part of the haemagglutinin (HA) gene showed that there is a diverse collection of viruses in these sediments. We sequenced 117 partial HA gene clones from 11 samples and detected four different HA subtypes (H3, H8, H11 and H12), with approximately 65 % of clone sequences being unique. This culture-independent approach was also able to detect a virus subtype that was not found by sampling of birds in the same geographical region in the same year. Viruses were detected readily in the winter when the ponds were frozen, indicating that these sediments could be a year-to-year reservoir of viruses to infect birds using the ponds, although we have not shown that these viruses are viable. We demonstrate that this approach is a feasible and valuable way to assess the prevalence and diversity of viruses present in the environment, and can be a valuable complement to more difficult viral culturing in attempting to understand the ecology of influenza viruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83369-0
2008-02-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/2/509.html?itemId=/content/journal/jgv/10.1099/vir.0.83369-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  2. Bracho, M. A., Moya, A. & Barrio, E. ( 1998; ). Contribution of Taq polymerase-induced errors to the estimation of RNA virus diversity. J Gen Virol 79, 2921–2928.
    [Google Scholar]
  3. Bragstad, K., Jorgensen, P. H., Handberg, K. J., Mellergaard, S., Corbet, S. & Fomsgaard, A. ( 2005; ). New avian influenza A virus subtype combination H5N7 identified in Danish mallard ducks. Virus Res 109, 181–190.[CrossRef]
    [Google Scholar]
  4. Brown, I. H., Harris, P., McCauley, J. & Alexander, D. ( 1998; ). Multiple genetic reassortment of avian and human influenza A viruses in European pigs, resulting in the emergence of an H1N2 virus of novel genotype. J Gen Virol 79, 2947–2955.
    [Google Scholar]
  5. Chen, H., Smith, G. J. D., Zhang, S. Y., Qin, K., Wang, J., Li, K. S., Webster, R. G., Peiris, J. S. M. & Guan, Y. ( 2005; ). Avian flu H5N1 virus outbreak in migratory waterfowl. Nature 436, 191–192.[CrossRef]
    [Google Scholar]
  6. Chen, H., Smith, G. J. D., Li, K. S., Wang, J., Fan, X. H., Rayner, J. M., Vijaykrishna, D., Zhang, J. X., Zhang, L. J. & other authors ( 2006; ). Establishment of multiple sublineages of H5N1 influenza virus in Asia: implications for pandemic control. Proc Natl Acad Sci U S A 103, 2845–2850.[CrossRef]
    [Google Scholar]
  7. Chenna, R., Sugawara, H., Koike, T., Lopez, R., Gibson, T. J., Higgins, D. G. & Thompson, J. D. ( 2003; ). Multiple sequence alignment with the clustal series of programs. Nucleic Acids Res 31, 3497–3500.[CrossRef]
    [Google Scholar]
  8. Dell'Anno, A. & Danovaro, R. ( 2005; ). Extracellular DNA plays a key role in deep-sea ecosystem functioning. Science 309, 2179 [CrossRef]
    [Google Scholar]
  9. Ferguson, N. M., Cummings, D. A. T., Cauchemez, S., Fraser, C., Riley, S., Meeyai, A., Iamsirithaworn, S. & Burke, D. S. ( 2005; ). Strategies for containing an emerging influenza pandemic in Southeast Asia. Nature 437, 209–214.[CrossRef]
    [Google Scholar]
  10. Fouchier, R. A. M., Bestebroer, T. M., Herfst, S., Van der Kemp, L., Rimmelzwaan, G. F. & Osterhaus, A. D. M. E. ( 2000; ). Detection of influenza A viruses from different species by PCR amplification of conserved sequences in the matrix gene. J Clin Microbiol 38, 4096–4101.
    [Google Scholar]
  11. Ghedin, E., Sengamalay, N. A., Shumway, M., Zaborsky, J., Feldblyum, T., Subbu, V., Spiro, D. J., Sitz, J., Koo, H. & other authors ( 2005; ). Large-scale sequencing of human influenza reveals the dynamic nature of viral genome evolution. Nature 437, 1162–1166.[CrossRef]
    [Google Scholar]
  12. Hatchette, T. F., Walker, D., Johnson, C., Baker, A., Pryor, S. P. & Webster, R. G. ( 2004; ). Influenza A viruses in feral Canadian ducks: extensive reassortment in nature. J Gen Virol 85, 2327–2337.[CrossRef]
    [Google Scholar]
  13. Hoffmann, E., Stech, J., Guan, Y., Webster, R. G. & Perez, D. R. ( 2001; ). Universal primer set for the full-length amplification of all influenza A viruses. Arch Virol 146, 2275–2289.[CrossRef]
    [Google Scholar]
  14. Holmes, E. C., Ghedin, E., Miller, N., Taylor, J., Bao, Y., George, K. S., Grenfell, B. T., Salzberg, S. L., Fraser, C. M. & other authors ( 2005; ). Whole-genome analysis of human influenza A virus reveals multiple persistent lineages and reassortment among recent H3N2 viruses. PLoS Biol 3, e300 [CrossRef]
    [Google Scholar]
  15. Huelsenbeck, J. P. & Ronquist, F. ( 2001; ). mrbayes: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755.[CrossRef]
    [Google Scholar]
  16. Ito, T., Okazaki, K., Kawaoka, Y., Takada, A., Webster, R. G. & Kida, H. ( 1995; ). Perpetuation of influenza A viruses in Alaskan waterfowl reservoirs. Arch Virol 140, 1163–1172.[CrossRef]
    [Google Scholar]
  17. Kuiken, T., Holmes, E. C., McCauley, J., Rimmelzwaan, G. F., Williams, C. S. & Grenfell, B. T. ( 2006; ). Host species barriers to influenza virus infections. Science 312, 394–397.[CrossRef]
    [Google Scholar]
  18. Lawrence, J. E., Chan, A. M. & Suttle, C. A. ( 2002; ). Viruses causing lysis of the toxic bloom-forming alga Heterosigma akashiwo (Raphidophyceae) are widespread in coastal sediments of British Columbia, Canada. Limnol Oceanogr 47, 545–550.[CrossRef]
    [Google Scholar]
  19. Liu, J., Xiao, H., Lei, F., Zhu, Q., Qin, K., Zhang, X.-w., Zhang, X.-l., Zhao, D., Wang, G. & other authors ( 2005; ). Highly pathogenic H5N1 influenza virus infection in migratory birds. Science 309, 1206 [CrossRef]
    [Google Scholar]
  20. Olsen, B., Munster, V. J., Wallensten, A., Waldenstrom, J., Osterhaus, A. D. M. E. & Fouchier, R. A. M. ( 2006; ). Global patterns of influenza A virus in wild birds. Science 312, 384–388.[CrossRef]
    [Google Scholar]
  21. Phipps, L. P., Essen, S. C. & Brown, I. H. ( 2004; ). Genetic subtyping of influenza A viruses using RT-PCR with a single set of primers based on conserved sequences within the HA2 coding region. J Virol Methods 122, 119–122.[CrossRef]
    [Google Scholar]
  22. Runstadler, J. A., Happ, G. M., Slemons, R. D., Sheng, Z. M., Gundlach, N., Petrula, M., Senne, D., Nolting, J., Evers, D. L. & other authors ( 2007; ). Using RRT-PCR analysis and virus isolation to determine the prevalence of avian influenza virus infections in ducks at Minto Flats State Game Refuge, Alaska, during August 2005. Arch Virol 152, 1901–1910.[CrossRef]
    [Google Scholar]
  23. Sambrook, J. & Russell, D. W. ( 2001; ). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  24. Savill, N. J., St Rose, S. G., Keeling, M. J. & Woolhouse, M. E. J. ( 2006; ). Silent spread of H5N1 in vaccinated poultry. Nature 442, 757 [CrossRef]
    [Google Scholar]
  25. Sivanandan, V., Halvorson, D. A., Laudert, E., Senne, D. A. & Kumar, M. C. ( 1991; ). Isolation of H13N2 influenza A virus from turkeys and surface water. Avian Dis 35, 974–977.[CrossRef]
    [Google Scholar]
  26. Spackman, E., Stallknecht, D. E., Slemons, R. D., Winker, K., Suarez, D. L., Scott, M. & Swayne, D. E. ( 2005; ). Phylogenetic analyses of type A influenza genes in natural reservoir species in North America reveals genetic variation. Virus Res 114, 89–100.[CrossRef]
    [Google Scholar]
  27. Spackman, E., McCracken, K. G., Winker, K. & Swayne, D. E. ( 2006; ). H7N3 avian influenza virus found in a South American wild duck is related to the Chilean 2002 poultry outbreak, contains genes from equine and North American wild bird lineages, and is adapted to domestic turkeys. J Virol 80, 7760–7764.[CrossRef]
    [Google Scholar]
  28. Swofford, D. ( 2000; ). paup*: Phylogenetic analysis using parsimony (*and other methods), version 4.0. Sunderland, MA: Sinauer Associates.
  29. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  30. Vaisvila, R., Morgan, R. D., Posfai, J. & Raleigh, E. A. ( 2001; ). Discovery and distribution of super-integrons among pseudomonads. Mol Microbiol 42, 587–601.
    [Google Scholar]
  31. Webster, R. G., Bean, W., Gorman, O., Chambers, T. & Kawaoka, Y. ( 1992; ). Evolution and ecology of influenza A viruses. Microbiol Rev 56, 152–179.
    [Google Scholar]
  32. Zhang, G., Shoham, D., Gilichinsky, D., Davydov, S., Castello, J. D. & Rogers, S. O. ( 2006; ). Evidence of influenza A virus RNA in Siberian lake ice. J Virol 80, 12229–12235.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83369-0
Loading
/content/journal/jgv/10.1099/vir.0.83369-0
Loading

Data & Media loading...

Supplements

vol. , part 2, pp. 509 – 519

Sampling locations for this study

Identification of viruses included in H3 phylogenetic analyses (Figs 3a and 4)

Identification of viruses included in H11 phylogenetic analyses (Fig. 6)

[ Single PDF file] (173 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error