1887

Abstract

The pathogenicity of two granuloviruses (GVs), GV (XecnGV) and GV (PsunGV), was examined in . Partial sequencing of the genome of PsunGV indicated that it is related closely to XecnGV, but considered to be a different species. PsunGV and XecnGV showed similar pathogenicity in terms of dose–mortality response and pattern of host mass changes following infection. Both GVs killed infected larvae in 2–3 weeks. Temporal changes in the concentrations of GV-specific DNA in the larval haemolymph were measured by using a real-time quantitative PCR. Viral DNA concentration increased quickly and reached a plateau at 60–72 h post-inoculation. Rates of budded virus (BV) production of each GV were estimated on the basis of viral DNA concentrations by a modified Gompertz model. The slopes of the estimated BV growth curves of both XecnGV and PsunGV in larvae were equivalent to that of nucleopolyhedrovirus (NPV) in its original host, reported in our previous study. This suggested that BV production is not a major factor in the slower killing speed of GVs in comparison to NPVs. The GV-infected larvae survived for an additional 10 days or more after reaching a maximum level of BV concentration, and kept growing without pupation. These findings also suggested that the GVs have a unique mechanism to regulate the growth of host larvae.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83365-0
2008-04-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/4/915.html?itemId=/content/journal/jgv/10.1099/vir.0.83365-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  2. Begon B., Haji Daud K. B., Young P., Howells R. E. 1993; The invasion and replication of a granulosis virus in the indian meal moth, Plodia interpunctella : an electron microscope study. J Invertebr Pathol 61:281–295 [CrossRef]
    [Google Scholar]
  3. Corsaro B. G., Gijzen M., Wang P., Granados R. R. 1993; Baculovirus enhancing proteins as determinants of viral pathogenesis. In Parasites and Pathogens of Insects vol. 2Pathogens pp 127–145Edited by Beckage N. E., Thompson S. N., Federici B. A. New York: Academic Press;
    [Google Scholar]
  4. Federici B. A. 1997; Baculovirus pathogenesis. In The Baculoviruses pp 33–59Edited by Miller L. K. New York: Plenum;
    [Google Scholar]
  5. Finney D. J. 1978 Statistical Method in Biological Assay, 3rd edn. London: Charles Griffin & Co;
    [Google Scholar]
  6. Goldberg A. V., Romanowski V., Federici B. A., Sciocco de Cap A. 2002; Effects of the Epap granulovirus on its host, Epinotia aporema (Lepidoptera: Tortricidae). J Invertebr Pathol 80:148–159 [CrossRef]
    [Google Scholar]
  7. Goto C. 1990; Enhancement of a nuclear polyhedrosis virus (NPV) infection by a granulosis virus (GV) isolated from the spotted cutworm, Xestia c-nigrum L.(Lepidoptera: Noctuidae). Appl Entomol Zool (Jpn) 25:135–137
    [Google Scholar]
  8. Goto C., Tsutsui H., Honma K., Iizuka T., Nakajima T. 1985; Studies on nuclear polyhedrosis and granulosis virus of the spotted cutworm, Xestia c-nigrum L. Jpn J Appl Entomol Zool 29:102–106 (in Japanese with English summary [CrossRef]
    [Google Scholar]
  9. Goto C., Minobe Y., Iizuka T. 1992; Restriction endonuclease analysis and mapping of the genomes of granulosis viruses isolated from Xestia c-nigrum and five other noctuid species. J Gen Virol 73:1491–1497 [CrossRef]
    [Google Scholar]
  10. Hackett K. J., Boore A., Deming C., Buckley E., Camp M., Shapiro M. 2000; Helicoverpa armigera granulovirus interference with progression of H. zea nucleopolyhedrovirus disease in H. zea larvae. J Invertebr Pathol 75:99–106 [CrossRef]
    [Google Scholar]
  11. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  12. Hashimoto Y., Hayashi K., Okuno Y., Hayakawa T., Saimoto A., Granados R. R., Matsumoto T. 1996; Physical mapping and identification of interspersed homologous sequences in the Trichoplusia ni granulosis virus genome. J Gen Virol 77:555–563 [CrossRef]
    [Google Scholar]
  13. Hayakawa T., Ko R., Okano K., Seong S. I., Goto C., Maeda S. 1999; Sequence analysis of the Xestia c-nigrum granulovirus genome. Virology 262:277–297 [CrossRef]
    [Google Scholar]
  14. Herniou E. A., Olezewski J. A., O'Reilly D. R., Cory J. S. 2004; Ancient coevolution of baculoviruses and their insect hosts. J Virol 78:3244–3251 [CrossRef]
    [Google Scholar]
  15. Hess R. T., Falcon L. A. 1987; Temporal events in the invasion of the codling moth, Cydia pomonella , by a granulosis virus: an electron microscope study. J Invertebr Pathol 50:85–105 [CrossRef]
    [Google Scholar]
  16. Jehle J. A., Blissard G. W., Bonning B. C., Cory J. S., Herniou E. A., Rohrmann G. F., Theilmann D. A., Thiem S. M., Vlak J. M. 2006a; On the classification and nomenclature of baculoviruses: a proposal for revision. Arch Virol 151:1257–1266 [CrossRef]
    [Google Scholar]
  17. Jehle J. A., Lange M., Wang H., Hu Z., Wang Y., Hauschild R. 2006b; Molecular identification and phylogenetic analysis of baculoviruses from Lepidoptera. Virology 346:180–193 [CrossRef]
    [Google Scholar]
  18. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  19. Kumar S., Tamura K., Nei M. 2004; mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [CrossRef]
    [Google Scholar]
  20. Lange M., Wang H., Zhihong H., Jehle J. A. 2004; Towards a molecular identification and classification system of lepidopteran-specific baculoviruses. Virology 325:36–47 [CrossRef]
    [Google Scholar]
  21. Liu S., Li H., Sivakumar S., Bonning B. C. 2006; Virus-derived genes for insect-resistant transgenic plants. In Advances in Virus Research vol. 68 Insect Viruses Biotechnological Applications pp 427–457Edited by Bonning B. C. San Diego, CA: Elsevier;
    [Google Scholar]
  22. Lo H. R., Chao Y. C. 2004; Rapid titer determination of baculovirus by quantitative real-time polymerase chain reaction. Biotechnol Prog 20:354–360
    [Google Scholar]
  23. Mukawa S., Goto C. 2006; In vivo characterization of a group II nucleopolyhedrovirus isolated from Mamestra brassicae (Lepidoptera: Noctuidae) in Japan. J Gen Virol 87:1491–1500 [CrossRef]
    [Google Scholar]
  24. Nakai M., Shiotsuki T., Kunimi Y. 2004; An entomopoxvirus and a granulovirus use different mechanisms to prevent pupation of Adoxophyes honmai . Virus Res 101:185–191 [CrossRef]
    [Google Scholar]
  25. Roelvink P. W., Corsaro B. G., Granados R. R. 1995; Characterization of the Helicoverpa armigera and Pseudaletia unipuncta granulovirus enhancin gene. J Gen Virol 76:2693–2705 [CrossRef]
    [Google Scholar]
  26. Summers M. D. 1969; Apparent in vivo pathway of granulosis virus invasion and infection. J Virol 4:188–190
    [Google Scholar]
  27. Summers M. D. 1971; Electron microscopic observations on granulosis virus entry, uncoating and replication processes during infection of the midgut cells of Trichoplusia ni . J Ultrastruct Res 35:606–625 [CrossRef]
    [Google Scholar]
  28. Tanada Y. 1959; Descriptions and characteristics of a nuclear polyhedrosis virus and a granulosis virus of the armyworm, Pseudaletia unipuncta (Haworth) (Lepidoptera, Noctuidae). J Insect Pathol 1:197–214
    [Google Scholar]
  29. Tanada Y. 1985; A synopsis of studies on the synergistic property of an insect baculovirus: a tribute to Edward A. Steinhaus. J Invertebr Pathol 45:125–138
    [Google Scholar]
  30. Tanada Y., Hukuhara T. 1968; A nonsynergistic strain of a granulosis virus of the armyworm, Pseudaletia unipuncta . J Invertebr Pathol 12:263–268 [CrossRef]
    [Google Scholar]
  31. Tanada Y., Leutenegger R. 1970; Multiplication of a granulosis virus in larval midgut cells of Trichoplusia ni and possible pathways of invasion into the hemocoel. J Ultrastruct Res 30:589–600 [CrossRef]
    [Google Scholar]
  32. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  33. Williams G. V., Faulkner P. 1997; Cytological changes and viral morphogenesis during baculovirus infection. In The Baculoviruses pp 61–108Edited by Miller L. K. New York: Plenum;
    [Google Scholar]
  34. Winstanley D., Crook N. E. 1993; Replication of Cydia pomonella granulosis virus in cell cultures. J Gen Virol 74:1599–1609 [CrossRef]
    [Google Scholar]
  35. Zwietering M. H., Jongenburger I., Rombouts F. M., van't Riet K. 1990; Modeling of the bacterial growth curve. Appl Environ Microbiol 56:1875–1881
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83365-0
Loading
/content/journal/jgv/10.1099/vir.0.83365-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error