1887

Abstract

Most low-pathogenicity avian influenza (LPAI) viruses cause no or mild disease in avian species. Little is known about the mechanisms of host defence and the immune responses of avian influenza-infected birds. This study showed that chicken macrophages are susceptible to infection with LPAI H9N2 and H6N2 viruses and that infection led to apoptosis. In H9N2 virus-infected chicken macrophages, Toll-like receptor 7 responded to infection and mediated the cytokine responses. Whilst pro-inflammatory cytokines were largely upregulated, the interferon (IFN) response was fairly weak and IFN-inducible genes were differentially regulated. Among the regulated genes, major histocompatibility complex (MHC) antigens II were downregulated, which also occurred in the lungs of H9N2-infected chickens. Additionally, interleukin (IL)-4, IL-4 receptor and CD74 (MHC class II invariable chain) were also downregulated, all of which are pivotal in the activation of CD4 helper T cells and humoral immunity. Remarkably, in H9N2 virus-infected chickens, the antibody response was severely suppressed. This was in contrast to the robust antibody response in chickens infected with H6N2 virus, in which expression of MHC class II antigens was upregulated. These data suggest that neutralizing antibodies and humoral immunity may not be developed efficiently in H9N2-infected chickens. These findings raise questions about how some LPAI viruses differentially regulate avian immune responses and whether they have similar effects on mammalian immune function.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83362-0
2008-05-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/5/1288.html?itemId=/content/journal/jgv/10.1099/vir.0.83362-0&mimeType=html&fmt=ahah

References

  1. Alexander, D. J. ( 2000; ). A review of avian influenza in different bird species. Vet Microbiol 74, 3–13.[CrossRef]
    [Google Scholar]
  2. Arunachalam, B., Phan, U. T., Geuze, H. J. & Cresswell, P. ( 2000; ). Enzymatic reduction of disulfide bonds in lysosomes: characterization of a gamma-interferon-inducible lysosomal thiol reductase (GILT). Proc Natl Acad Sci U S A 97, 745–750.[CrossRef]
    [Google Scholar]
  3. Asao, H., Okuyama, C., Kumaki, S., Ishii, N., Tsuchiya, S., Foster, D. & Sugamura, K. ( 2001; ). Cutting edge: the common γ-chain is an indispensable subunit of the IL-21 receptor complex. J Immunol 167, 1–5.[CrossRef]
    [Google Scholar]
  4. Baas, T., Baskin, C. R., Diamond, D. L., García-Sastre, A., Bielefeldt-Ohmann, H., Tumpey, T. M., Thomas, M. J., Carter, V. S., Teal, T. H. & other authors ( 2006; ). Integrated molecular signature of disease: analysis of influenza virus-infected macaques through functional genomics and proteomics. J Virol 80, 10813–10828.[CrossRef]
    [Google Scholar]
  5. Baskin, C. R., García-Sastre, A., Tumpey, T. M., Bielefeldt-Ohmann, H., Carter, V. S., Nistal-Villan, E. & Katze, M. G. ( 2004; ). Integration of clinical data, pathology, and cDNA microarrays in influenza virus-infected pigtailed macaques (Macaca nemestrina). J Virol 78, 10420–10432.[CrossRef]
    [Google Scholar]
  6. Brydon, E. W., Morris, S. J. & Sweet, C. ( 2005; ). Role of apoptosis and cytokines in influenza virus morbidity. FEMS Microbiol Rev 29, 837–850.[CrossRef]
    [Google Scholar]
  7. Chen, B. L., Zhang, Z. J. & Chen, W. B. ( 1994; ). Isolation and identification of avian influenza virus. Chin J Vet Med 10, 3–5.
    [Google Scholar]
  8. Degen, W. G., Smith, J., Simmelink, B., Glass, E. J., Burt, D. W. & Schijns, V. E. ( 2006; ). Molecular immunophenotyping of lungs and spleens in naive and vaccinated chickens early after pulmonary avian influenza A (H9N2) virus infection. Vaccine 24, 6096–6109.[CrossRef]
    [Google Scholar]
  9. Diaz-Mitoma, F., Alvarez-Maya, I., Dabrowski, A., Jaffey, J., Frost, R., Aucoin, S., Kryworuchko, M., Lapner, M., Tadesse, H. & Giulivi, A. ( 2004; ). Transcriptional analysis of human peripheral blood mononuclear cells after influenza immunization. J Clin Virol 31, 100–112.[CrossRef]
    [Google Scholar]
  10. Fujisawa, H., Tsuru, S., Taniguchi, M., Zinnaka, Y. & Nomoto, K. ( 1987; ). Protective mechanisms against pulmonary infection with influenza virus. I. Relative contribution of polymorphonuclear leukocytes and of alveolar macrophages to protection during the early phase of intranasal infection. J Gen Virol 68, 425–432.[CrossRef]
    [Google Scholar]
  11. Geiss, G. K., An, M. C., Bumgarner, R. E., Hammersmark, E., Cunningham, D. & Katze, M. G. ( 2001; ). Global impact of influenza virus on cellular pathways is mediated by both replication-dependent and -independent events. J Virol 75, 4321–4331.[CrossRef]
    [Google Scholar]
  12. Geiss, G. K., Salvatore, M., Tumpey, T. M., Carter, V. S., Wang, X., Basler, C. F., Taubenberger, J. K., Bumgarner, R. E., Palese, P. & other authors ( 2002; ). Cellular transcriptional profiling in influenza A virus-infected lung epithelial cells: the role of the nonstructural NS1 protein in the evasion of the host innate defense and its potential contribution to pandemic influenza. Proc Natl Acad Sci U S A 99, 10736–10741.[CrossRef]
    [Google Scholar]
  13. Guan, Y., Shortridge, K. F., Krauss, S. & Webster, R. G. ( 1999; ). Molecular characterization of H9N2 influenza viruses: were they the donors of the “internal” genes of H5N1 viruses in Hong Kong? Proc Natl Acad Sci U S A 96, 9363–9367.[CrossRef]
    [Google Scholar]
  14. Guan, Y., Shortridge, K. F., Krauss, S., Chin, P. S., Dyrting, K. C., Ellis, T. M., Webster, R. G. & Peiris, M. ( 2000; ). H9N2 influenza viruses possessing H5N1-like internal genomes continue to circulate in poultry in southeastern China. J Virol 74, 9372–9380.[CrossRef]
    [Google Scholar]
  15. Guo, Y., Li, J., Cheng, X., Wang, M., Zhou, Y., Li, X. H., Cai, F., Miao, H. L., Zhang, H. & Guo, F. ( 1999; ). Discovery of humans infected by avian influenza A (H9N2) virus. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi 13, 105–108.
    [Google Scholar]
  16. Hirst, G. K. ( 1942; ). The quantitative determination of influenza virus and antibodies by means of red cell agglutination. J Exp Med 75, 49–64.[CrossRef]
    [Google Scholar]
  17. Huang, Q., Liu, D., Majewski, P., Schulte, L. C., Korn, J. M., Young, R. A., Lander, E. S. & Hacohen, N. ( 2001; ). The plasticity of dendritic cell responses to pathogens and their components. Science 294, 870–875.[CrossRef]
    [Google Scholar]
  18. Kash, J. C., Basler, C. F., García-Sastre, A., Carter, V., Billharz, R., Swayne, D. E., Przygodzki, R. M., Taubenberger, J. K., Katze, M. G. & Tumpey, T. M. ( 2004; ). Global host immune response: pathogenesis and transcriptional profiling of type A influenza viruses expressing the hemagglutinin and neuraminidase genes from the 1918 pandemic virus. J Virol 78, 9499–9511.[CrossRef]
    [Google Scholar]
  19. Kash, J. C., Tumpey, T. M., Proll, S. C., Carter, V., Perwitasari, O., Thomas, M. J., Basler, C. F., Palese, P., Taubenberger, J. K. & other authors ( 2006; ). Genomic analysis of increased host immune and cell death responses induced by 1918 influenza virus. Nature 443, 578–581.
    [Google Scholar]
  20. Kato, H., Takeuchi, O., Sato, S., Yoneyama, M., Yamamoto, M., Matsui, K., Uematsu, S., Jung, A., Kawai, T. & other authors ( 2006; ). Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441, 101–105.[CrossRef]
    [Google Scholar]
  21. Kaufmann, A., Salentin, R., Meyer, R. G., Bussfeld, D., Pauligk, C., Fesq, H., Hofmann, P., Nain, M., Gemsa, D. & Sprenger, H. ( 2001; ). Defense against influenza A virus infection: essential role of the chemokine system. Immunobiology 204, 603–613.[CrossRef]
    [Google Scholar]
  22. Kawai, T., Takahashi, K., Sato, S., Coban, C., Kumar, H., Kato, H., Ishii, K. J., Takeuchi, O. & Akira, S. ( 2005; ). IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat Immunol 6, 981–988.[CrossRef]
    [Google Scholar]
  23. Kobasa, D., Jones, S. M., Shinya, K., Kash, J. C., Copps, J., Ebihara, H., Hatta, Y., Kim, J. H., Halfmann, P. & other authors ( 2007; ). Aberrant innate immune response in lethal infection of macaques with the 1918 influenza virus. Nature 445, 319–323.[CrossRef]
    [Google Scholar]
  24. Lee, C. W., Song, C. S., Lee, Y. J., Mo, I. P., Garcia, M., Suarez, D. L. & Kim, S. J. ( 2000; ). Sequence analysis of the hemagglutinin gene of H9N2 Korean avian influenza viruses and assessment of the pathogenic potential of isolate MS96. Avian Dis 44, 527–535.[CrossRef]
    [Google Scholar]
  25. Maric, M., Arunachalam, B., Phan, U. T., Dong, C., Garrett, W. S., Cannon, K. S., Alfonso, C., Karlsson, L., Flavell, R. A. & Cresswell, P. ( 2001; ). Defective antigen processing in GILT-free mice. Science 294, 1361–1365.[CrossRef]
    [Google Scholar]
  26. Marshall, D. R., Olivas, E., Andreansky, S., La Gruta, N. L., Neale, G. A., Gutierrez, A., Wichlan, D. G., Wingo, S., Cheng, C. & other authors ( 2005; ). Effector CD8+ T cells recovered from an influenza pneumonia differentiate to a state of focused gene expression. Proc Natl Acad Sci U S A 102, 6074–6079.[CrossRef]
    [Google Scholar]
  27. Matrosovich, M. N., Krauss, S. & Webster, R. G. ( 2001; ). H9N2 influenza A viruses from poultry in Asia have human virus-like receptor specificity. Virology 281, 156–162.[CrossRef]
    [Google Scholar]
  28. Mok, C. K., Lee, D. C., Cheung, C. Y., Peiris, M. & Lau, A. S. ( 2007; ). Differential onset of apoptosis in influenza A virus H5N1- and H1N1-infected human blood macrophages. J Gen Virol 88, 1275–1280.[CrossRef]
    [Google Scholar]
  29. Naeem, K., Ullah, A., Manvell, R. J. & Alexander, D. J. ( 1999; ). Avian influenza A subtype H9N2 in poultry in Pakistan. Vet Rec 145, 560 [CrossRef]
    [Google Scholar]
  30. Peiris, M., Yuen, K. Y., Leung, C. W., Chan, K. H., Ip, P. L., Lai, R. W., Orr, W. K. & Shortridge, K. F. ( 1999; ). Human infection with influenza H9N2. Lancet 354, 916–917.[CrossRef]
    [Google Scholar]
  31. Peiris, J. S., Guan, Y., Markwell, D., Ghose, P., Webster, R. G. & Shortridge, K. F. ( 2001; ). Cocirculation of avian H9N2 and contemporary “human” H3N2 influenza A viruses in pigs in southeastern China: potential for genetic reassortment? J Virol 75, 9679–9686.[CrossRef]
    [Google Scholar]
  32. Rath, N. C., Parcells, M. S., Xie, H. & Santin, E. ( 2003; ). Characterization of a spontaneously transformed chicken mononuclear cell line. Vet Immunol Immunopathol 96, 93–104.[CrossRef]
    [Google Scholar]
  33. Schadt, E. E., Li, C., Ellis, B. & Wong, W. H. ( 2001; ). Feature extraction and normalization algorithms for high-density oligonucleotide gene expression array data. J Cell Biochem Suppl 37, 120–125.
    [Google Scholar]
  34. Seo, S. H. & Webster, R. G. ( 2001; ). Cross-reactive, cell-mediated immunity and protection of chickens from lethal H5N1 influenza virus infection in Hong Kong poultry markets. J Virol 75, 2516–2525.[CrossRef]
    [Google Scholar]
  35. Seo, S. H., Webby, R. & Webster, R. G. ( 2004; ). No apoptotic deaths and different levels of inductions of inflammatory cytokines in alveolar macrophages infected with influenza viruses. Virology 329, 270–279.[CrossRef]
    [Google Scholar]
  36. Spackman, E., Senne, D. A., Myers, T. J., Bulaga, L. L., Garber, L. P., Perdue, M. L., Lohman, K., Daum, L. T. & Suarez, D. L. ( 2002; ). Development of a real-time reverse transcriptase PCR assay for type A influenza virus and the avian H5 and H7 hemagglutinin subtypes. J Clin Microbiol 40, 3256–3260.[CrossRef]
    [Google Scholar]
  37. Strengell, M., Sareneva, T., Foster, D., Julkunen, I. & Matikainen, S. ( 2002; ). IL-21 up-regulates the expression of genes associated with innate immunity and Th1 response. J Immunol 169, 3600–3605.[CrossRef]
    [Google Scholar]
  38. Strengell, M., Matikainen, S., Siren, J., Lehtonen, A., Foster, D., Julkunen, I. & Sareneva, T. ( 2003; ). IL-21 in synergy with IL-15 or IL-18 enhances IFN-γ production in human NK and T cells. J Immunol 170, 5464–5469.[CrossRef]
    [Google Scholar]
  39. Stumptner-Cuvelette, P. & Benaroch, P. ( 2002; ). Multiple roles of the invariant chain in MHC class II function. Biochim Biophys Acta 1542, 1–13.[CrossRef]
    [Google Scholar]
  40. Tang, X. Y., Tian, G. B., Zhao, C. S., Zhou, J. F. & Yu, K. Z. ( 1998; ). Isolation and characterization of prevalent strains of avian influenza viruses in China. Chin J Prev Vet Med 1, 1–5.
    [Google Scholar]
  41. Taylor, P. R., Martinez-Pomares, L., Stacey, M., Lin, H. H., Brown, G. D. & Gordon, S. ( 2005; ). Macrophage receptors and immune recognition. Annu Rev Immunol 23, 901–944.[CrossRef]
    [Google Scholar]
  42. Twigg, H. L., III ( 2004; ). Macrophages in innate and acquired immunity. Semin Respir Crit Care Med 25, 21–31.[CrossRef]
    [Google Scholar]
  43. Tyner, J. W., Uchida, O., Kajiwara, N., Kim, E. Y., Patel, A. C., O'Sullivan, M. P., Walter, M. J., Schwendener, R. A., Cook, D. N. & other authors ( 2005; ). CCL5–CCR5 interaction provides antiapoptotic signals for macrophage survival during viral infection. Nat Med 11, 1180–1187.[CrossRef]
    [Google Scholar]
  44. Uyeki, T. M., Chong, Y. H., Katz, J. M., Lim, W., Ho, Y. Y., Wang, S. S., Tsang, T. H., Au, W. W., Chan, S. C. & other authors ( 2002; ). Lack of evidence for human-to-human transmission of avian influenza A (H9N2) viruses in Hong Kong, China 1999. Emerg Infect Dis 8, 154–159.[CrossRef]
    [Google Scholar]
  45. Wei, L., Sandbulte, M. R., Thomas, P. G., Webby, R. J., Homayouni, R. & Pfeffer, L. M. ( 2006; ). NFκB negatively regulates interferon-induced gene expression and anti-influenza activity. J Biol Chem 281, 11678–11684.[CrossRef]
    [Google Scholar]
  46. Woolcock, P. R., Suarez, D. L. & Kuney, D. ( 2003; ). Low-pathogenicity avian influenza virus (H6N2) in chickens in California, 2000–02. Avian Dis 47, 872–881.[CrossRef]
    [Google Scholar]
  47. Xing, Z. & Schat, K. A. ( 2000; ). Expression of cytokine genes in Marek's disease virus-infected chickens and chicken embryo fibroblast cultures. Immunology 100, 70–76.[CrossRef]
    [Google Scholar]
  48. Zhong, S., Li, C. & Wong, W. H. ( 2003; ). ChipInfo: software for extracting gene annotation and gene ontology information for microarray analysis. Nucleic Acids Res 31, 3483–3486.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83362-0
Loading
/content/journal/jgv/10.1099/vir.0.83362-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error