1887

Abstract

Entry of dengue virus 2 (DENV-2) into mosquito C6/36 cells was analysed using biochemical and molecular inhibitors, together with confocal and electron microscopy observations. Treatment with monodansylcadaverine, chlorpromazine, sucrose and ammonium chloride inhibited DENV-2 virus yield and protein expression, whereas nystatin, a blocker of caveolae-mediated endocytosis, did not have any effect. Using confocal microscopy, co-localization of DENV-2 E glycoprotein and the marker protein transferrin was observed at the periphery of the cytoplasm. To support the requirement of clathrin function for DENV-2 entry, overexpression of a dominant-negative mutant of Eps15 in C6/36 cells was shown to impair virus entry. The disruption of actin microfilaments by cytochalasin D also significantly affected DENV-2 replication. In contrast, microtubule disruption by colchicine treatment did not impair DENV-2 infectivity, suggesting that DENV-2 does not require transport from early to late endosomes for successful infection of mosquito cells. Furthermore, using transmission electron microscopy, DENV-2 particles of approximately 44–52 nm were found attached within electron-dense invaginations of the plasma membrane and in coated vesicles that resembled those of clathrin-coated pits and vesicles, respectively. Together, these results demonstrate for the first time that DENV-2 enters insect cells by receptor-mediated, clathrin-dependent endocytosis, requiring traffic through an acidic pH compartment for subsequent uncoating and completion of a productive infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83357-0
2008-02-01
2020-01-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/2/474.html?itemId=/content/journal/jgv/10.1099/vir.0.83357-0&mimeType=html&fmt=ahah

References

  1. Anderson, H. A., Chen, Y. & Norkin, L. C. ( 1996; ). Bound simian virus 40 translocates to caveolin-enriched membrane domains, and its entry is inhibited by drugs that selectively disrupt caveolae. Mol Biol Cell 7, 1825–1834.[CrossRef]
    [Google Scholar]
  2. Benmerah, A., Lamaze, C., Bègue, B., Schmid, S. L., Dautry-Varsat, A. & Cerf-Bensussan, N. ( 1998; ). AP-2/Eps 15 interaction is required for receptor-mediated endocytosis. J Cell Biol 140, 1055–1062.[CrossRef]
    [Google Scholar]
  3. Benmerah, A., Bayrou, M., Cerf-Bensussan, N. & Dautry-Varsat, A. ( 1999; ). Inhibition of clathrin-coated pit assembly by an Eps15 mutant. J Cell Sci 112, 1303–1311.
    [Google Scholar]
  4. Bielefeldt-Ohmann, H., Meyer, M., Fitzpatrick, D. R. & Mackenzie, J. S. ( 2001; ). Dengue virus binding to human leukocytic cell lines: receptor usage differs between cell types and virus strains. Virus Res 73, 81–89.[CrossRef]
    [Google Scholar]
  5. Bishop, N. E. ( 1997; ). An update on non-clathrin-coated endocytosis. Rev Med Virol 7, 199–209.[CrossRef]
    [Google Scholar]
  6. Blanchard, E., Belouzard, S., Goueslain, L., Wakita, T., Dubuisson, J., Wychowski, C. & Rouillé, Y. ( 2006; ). Hepatitis C virus entry depends on clathrin-mediated endocytosis. J Virol 80, 6964–6972.[CrossRef]
    [Google Scholar]
  7. Buss, F., Luzio, J. P. & Kendrick-Jones, J. ( 2001; ). Myosin VI, a new force in clathrin-mediated endocytosis. FEBS Lett 508, 295–299.[CrossRef]
    [Google Scholar]
  8. Castilla, V., Mersich, S. E., Candurra, N. A. & Damonte, E. B. ( 1994; ). The entry of Junin virus into Vero cells. Arch Virol 136, 363–374.[CrossRef]
    [Google Scholar]
  9. Chen, Y., Maguire, T., Hileman, R. E., Fromm, J. R., Esko, J. D., Linhardt, R. J. & Marks, R. M. ( 1997; ). Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate. Nat Med 3, 866–871.[CrossRef]
    [Google Scholar]
  10. Chu, J. J. H. & Ng, M. L. ( 2004; ). Infectious entry of West Nile virus occurs through a clathrin-mediated endocytic pathway. J Virol 78, 10543–10555.[CrossRef]
    [Google Scholar]
  11. Chu, J. J. H., Leong, P. W. H. & Ng, M. L. ( 2006; ). Analysis of the endocytic pathway mediating the infectious entry of mosquito-borne flavivirus West Nile into Aedes albopictus mosquito (C6/36) cells. Virology 349, 463–475.[CrossRef]
    [Google Scholar]
  12. Damonte, E. B., Pujol, C. A. & Coto, C. E. ( 2004; ). Prospects for the therapy and prevention of dengue virus infections. Adv Virus Res 63, 239–285.
    [Google Scholar]
  13. Durrbach, A., Louvard, D. & Coudrier, E. ( 1996; ). Actin filaments facilitate two steps of endocytosis. J Cell Sci 109, 457–465.
    [Google Scholar]
  14. Flanagan, M. D. & Lin, S. ( 1980; ). Cytochalasins block actin filament elongation by binding to high-affinity sites associated with F-actin. J Biol Chem 255, 835–838.
    [Google Scholar]
  15. Germi, R., Crance, J. M., Garin, D., Guimet, J., Lortat-Jacob, H., Ruigrok, R. W. H., Zarski, J. P. & Drouet, E. ( 2002; ). Heparan sulfate-mediated binding of infectious dengue virus type 2 and yellow fever virus. Virology 292, 162–168.[CrossRef]
    [Google Scholar]
  16. Gollins, S. W. & Porterfield, J. S. ( 1985; ). Flavivirus infection enhancement in macrophages: an electron microscopic study of viral cellular entry. J Gen Virol 66, 1969–1982.[CrossRef]
    [Google Scholar]
  17. Gubler, D. J. ( 2002; ). Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends Microbiol 10, 100–103.[CrossRef]
    [Google Scholar]
  18. Hacker, J. K. & Hardy, J. L. ( 1997; ). Adsorptive endocytosis of California encephalitis virus into mosquito and mammalian cells: a role for G1. Virology 235, 40–47.[CrossRef]
    [Google Scholar]
  19. Hamel, E. ( 1996; ). Antimitotic natural products and their interaction with tubulin. Med Res Rev 16, 207–231.[CrossRef]
    [Google Scholar]
  20. Hansen, S. H., Sandving, K. & van Deurs, B. ( 1993; ). Clathrin and HA2 adaptors: effects of potassium depletion, hypertonic medium, and cytosol acidification. J Cell Biol 121, 61–72.[CrossRef]
    [Google Scholar]
  21. Hase, T., Summers, P. L. & Eckels, K. H. ( 1989; ). Flavivirus entry into cultured mosquito cells and human peripheral blood monocytes. Arch Virol 104, 129–143.[CrossRef]
    [Google Scholar]
  22. Hilgard, P. & Stockert, R. ( 2000; ). Heparan sulfate proteoglycans initiate dengue virus infection of hepatocytes. Hepatology 32, 1069–1077.[CrossRef]
    [Google Scholar]
  23. Jindadamrongwech, S. & Smith, D. R. ( 2004; ). Virus overlay protein binding assay (VOPBA) reveals serotype specific heterogeneity of dengue virus binding proteins on HepG2 human liver cells. Intervirology 47, 370–373.[CrossRef]
    [Google Scholar]
  24. Krey, T., Thiel, H.-J. & Rümenapf, T. ( 2005; ). Acid-resistant bovine pestivirus requires activation for pH-triggered fusion during entry. J Virol 79, 4191–4200.[CrossRef]
    [Google Scholar]
  25. Krishnan, M. N., Sukumaran, B., Pal, U., Agaise, H., Murray, J. L., Hodge, T. W. & Fikrig, E. ( 2007; ). Rab 5 is required for the cellular entry of dengue and West Nile viruses. J Virol 81, 4881–4885.[CrossRef]
    [Google Scholar]
  26. Kuhn, R. J., Zhang, W., Rossmann, M. G., Pletnev, S. V., Corver, J., Lenches, E., Jones, C. T., Mukhopadhyay, S., Chipman, P. R. & other authors ( 2002; ). Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell 108, 717–725.[CrossRef]
    [Google Scholar]
  27. Lecot, S., Belouzard, S., Dubuisson, J. & Rouillé, Y. ( 2005; ). Bovine viral diarrhea virus entry is dependent on clathrin-mediated endocytosis. J Virol 79, 10826–10829.[CrossRef]
    [Google Scholar]
  28. Lim, H. Y. & Ng, M. L. ( 1999; ). A different mode of entry by dengue-2 neutralisation escape mutant virus. Arch Virol 144, 989–995.[CrossRef]
    [Google Scholar]
  29. Lin, Y.-L., Lei, H.-Y., Lin, Y.-S., Yeh, T.-M., Chen, S.-H. & Liu, H.-S. ( 2002; ). Heparin inhibits dengue-2 virus infection of five human liver cell lines. Antiviral Res 56, 93–96.[CrossRef]
    [Google Scholar]
  30. Long, G., Pan, X., Kormelink, R. & Vlak, J. M. ( 2006; ). Functional entry of baculovirus into insect and mammalian cells is dependent on clathrin-mediated endocytosis. J Virol 80, 8830–8833.[CrossRef]
    [Google Scholar]
  31. Martínez-Barragán, J. J. & del Angel, R. M. ( 2001; ). Identification of a putative coreceptor on Vero cells that participates in dengue 4 virus infection. J Virol 75, 7818–7827.[CrossRef]
    [Google Scholar]
  32. Meertens, L., Bertaux, C. & Dragic, T. ( 2006; ). Hepatitis C virus entry requires a critical postinternalization step and delivery to early endosomes via clathrin-coated vesicles. J Virol 80, 11571–11578.[CrossRef]
    [Google Scholar]
  33. Mizutani, T., Kobayashi, M., Eshita, Y., Shirato, K., Kimura, T., Ako, I., Miyoshi, H., Takasaki, T., Kurane, I. & other authors ( 2003; ). Involvement of the JNK-like protein of the Aedes albopictus mosquito cell line, C6/36, in phagocytosis, endocytosis and infection with West Nile virus. Insect Mol Biol 12, 491–499.[CrossRef]
    [Google Scholar]
  34. Mizzen, L., Hilton, A., Cheley, S. & Anderson, R. ( 1985; ). Attenuation of murine coronavirus infection by ammonium chloride. Virology 142, 378–388.[CrossRef]
    [Google Scholar]
  35. Modis, Y., Ogata, S., Clements, D. & Harrison, S. C. ( 2003; ). A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc Natl Acad Sci U S A 100, 6986–6991.[CrossRef]
    [Google Scholar]
  36. Modis, Y., Ogata, S., Clements, D. & Harrison, S. C. ( 2004; ). Structure of the dengue virus envelope protein after membrane fusion. Nature 427, 313–319.[CrossRef]
    [Google Scholar]
  37. Moreno-Altamirano, M. M. B., Sánchez-García, F. J. & Muñoz, M. L. ( 2002; ). Non Fc receptor-mediated infection of human macrophages by dengue virus serotype 2. J Gen Virol 83, 1123–1130.
    [Google Scholar]
  38. Muñoz, M. L., Cisneros, A., Cruz, J., Das, P., Tovar, R. & Ortega, A. ( 1998; ). Putative dengue virus receptors from mosquito cells. FEMS Microbiol Lett 168, 251–258.[CrossRef]
    [Google Scholar]
  39. Navarro-Sánchez, E., Altmeyer, R., Amara, A., Schwartz, O., Fieschi, F., Virelizier, J. L., Arenzana-Seisdedos, F. & Despres, P. ( 2003; ). Dendritic-cell-specific ICAM3-grabbing non-integrin is essential for the productive infection of human dendritic cells by mosquito-cell-derived dengue viruses. EMBO Rep 4, 723–728.[CrossRef]
    [Google Scholar]
  40. Nawa, M. ( 1998; ). Effects of bafilomycin on Japanese encephalitis virus in C6/36 mosquito cells. Arch Virol 143, 1555–1568.[CrossRef]
    [Google Scholar]
  41. Nawa, M., Takasaki, T., Yamada, K.-I., Kurane, I. & Akatsuka, T. ( 2003; ). Interference in Japanese encephalitis virus infection of Vero cells by a cationic amphiphilic drug, chlorpromazine. J Gen Virol 84, 1737–1741.[CrossRef]
    [Google Scholar]
  42. Pelkmans, L. & Helenius, A. ( 2003; ). Insider information: what viruses tell us about endocytosis. Curr Opin Cell Biol 15, 414–422.[CrossRef]
    [Google Scholar]
  43. Pelkmans, L., Kartenbeck, J. & Helenius, A. ( 2001; ). Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nat Cell Biol 3, 473–483.[CrossRef]
    [Google Scholar]
  44. Qualmann, B. & Kessels, M. M. ( 2002; ). Endocytosis and the cytoskeleton. Int Rev Cytol 220, 93–144.
    [Google Scholar]
  45. Randolph, V. B. & Stollar, V. ( 1990; ). Low pH-induced cell fusion in flavivirus-infected Aedes albopictus cell cultures. J Gen Virol 71, 1845–1850.[CrossRef]
    [Google Scholar]
  46. Reyes-del Valle, J. & del Angel, R. M. ( 2004; ). Isolation of putative dengue virus receptor molecules by affinity chromatography using a recombinant E protein ligand. J Virol Methods 116, 95–102.[CrossRef]
    [Google Scholar]
  47. Reyes-del Valle, J., Chávez-Salinas, S., Medina, F. & del Angel, R. M. ( 2005; ). Heat shock protein 90 and heat shock protein 70 are components of dengue virus receptor complex in human cells. J Virol 79, 4557–4567.[CrossRef]
    [Google Scholar]
  48. Sakoonwatanyoo, P., Boonsanay, V. & Smith, D. R. ( 2006; ). Growth and production of the dengue virus in C6/36 cells and identification of a laminin-binding protein as a candidate serotype 3 and 4 receptor protein. Intervirology 49, 161–172.[CrossRef]
    [Google Scholar]
  49. Salas-Benito, J. S. & del Angel, R. M. ( 1997; ). Identification of two surface proteins from C6/36 cells that bind dengue type 4 virus. J Virol 71, 7246–7252.
    [Google Scholar]
  50. Schimmoller, F., Simon, I. & Pfeffer, S. R. ( 1998; ). Rab GTPases, directors of vesicle docking. J Biol Chem 273, 22161–22164.[CrossRef]
    [Google Scholar]
  51. Sieczkarski, S. B. & Whittaker, G. R. ( 2002; ). Dissecting virus entry via endocytosis. J Gen Virol 83, 1535–1545.
    [Google Scholar]
  52. Stiasny, K. & Heinz, F. X. ( 2006; ). Flavivirus membrane fusion. J Gen Virol 87, 2755–2766.[CrossRef]
    [Google Scholar]
  53. Summers, P. L., Houston Cohen, W., Ruiz, M. M., Hase, T. & Eckels, K. H. ( 1989; ). Flaviviruses can mediate fusion from without in Aedes albopictus mosquito cell cultures. Virus Res 12, 383–392.[CrossRef]
    [Google Scholar]
  54. Talarico, L. B. & Damonte, E. B. ( 2007; ). Interference in dengue virus adsorption and uncoating by carrageenans. Virology 363, 473–485.[CrossRef]
    [Google Scholar]
  55. Talarico, L. B., Pujol, C. A., Zibetti, R. G. M., Faría, P. C. S., Noseda, M. D., Duarte, M. E. R. & Damonte, E. B. ( 2005; ). The antiviral activity of sulfated polysaccharides against dengue virus is dependent on virus serotype and host cell. Antiviral Res 66, 103–110.[CrossRef]
    [Google Scholar]
  56. Thepparit, C. & Smith, D. R. ( 2004; ). Serotype-specific entry of dengue virus into liver cells: identification of the 37-kilodalton/67-kilodalton high-affinity laminin receptor as a dengue virus serotype 1 receptor. J Virol 78, 12647–12656.[CrossRef]
    [Google Scholar]
  57. Volk, D. E., Lee, Y. C., Li, X., Thiviyanathan, V., Gromowski, G. D., Li, L., Lamb, A. R., Beasley, D. W., Barrett, A. D. & Gorenstein, D. G. ( 2007; ). Solution structure of the envelope protein domain III of dengue-4 virus. Virology 364, 147–154.[CrossRef]
    [Google Scholar]
  58. Wang, L. H., Rothberg, K. G. & Anderson, R. G. ( 1993; ). Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation. J Cell Biol 123, 1107–1117.[CrossRef]
    [Google Scholar]
  59. Wei, H.-Y., Jiang, L.-F., Fang, L.-F. & Guo, H.-Y. ( 2003; ). Dengue virus type 2 infects human endothelial cells through binding of the viral envelope glycoprotein to cell surface polypeptides. J Gen Virol 84, 3095–3098.[CrossRef]
    [Google Scholar]
  60. Wei, T., Chen, H., Ichiki-Uehara, T., Hibino, H. & Omura, T. ( 2007; ). Entry of Rice dwarf virus into cultured cells of its insect vector involves clathrin-mediated endocytosis. J Virol 81, 7811–7815.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83357-0
Loading
/content/journal/jgv/10.1099/vir.0.83357-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error