Transcripts encoding the nanovirus master replication initiator proteins are terminally redundant Free

Abstract

The multicomponent single-stranded DNA plant nanoviruses encode unique master replication initiator (Rep) proteins. We have mapped the 5′ and 3′ termini of the corresponding polyadenylated mRNAs from faba bean necrotic yellows virus (FBNYV) and subterranean clover stunt virus and found that these are terminally redundant by up to about 160 nt. Moreover, the origin of viral DNA replication is transcribed into RNA that is capable of folding into extended secondary structures. Other nanovirus genome components, such as the FBNYV DNA encoding the protein Clink or an FBNYV DNA encoding a non-essential para-Rep protein, are not transcribed in such a unique fashion. Thus, terminally redundant mRNAs and the resulting transcription of the replication origin appear to be restricted to nanovirus master Rep DNAs. We speculate that this may be a way to regulate the expression of the essential master Rep protein.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83352-0
2008-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/2/583.html?itemId=/content/journal/jgv/10.1099/vir.0.83352-0&mimeType=html&fmt=ahah

References

  1. Accotto G. P., Donson J., Mullineaux P. M. 1989; Mapping of Digitaria streak virus transcripts reveals different RNA species from the same transcription unit. EMBO J 8:1033–1039
    [Google Scholar]
  2. Altschul S. F., Erickson B. W. 1985; Significance of nucleotide sequence alignments: a method for random sequence permutation that preserves dinucleotide and codon usage. Mol Biol Evol 2:526–538
    [Google Scholar]
  3. Aronson M. N., Meyer A. D., Gyorgyey J., Katul L., Vetten H. J., Gronenborn B., Timchenko T. 2000; Clink, a nanovirus-encoded protein, binds both pRB and SKP1. J Virol 74:2967–2972 [CrossRef]
    [Google Scholar]
  4. Beetham P. R., Hafner G. J., Harding R. M., Dale J. L. 1997; Two mRNAs are transcribed from banana bunchy top virus DNA-1. J Gen Virol 78:229–236
    [Google Scholar]
  5. Beetham P. R., Harding R. M., Dale J. L. 1999; Banana bunchy top virus DNA-2 to 6 are monocistronic. Arch Virol 144:89–105 [CrossRef]
    [Google Scholar]
  6. Boevink P., Chu P. W., Keese P. 1995; Sequence of subterranean clover stunt virus DNA: affinities with the geminiviruses. Virology 207:354–361 [CrossRef]
    [Google Scholar]
  7. Brown T., Mackey K., Du T. 2004; Analysis of RNA by Northern and slot blot hybridization. In Current Protocols in Molecular Biology pp. 4.9.1–4.9.19Edited by Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. New York: Wiley;
    [Google Scholar]
  8. Campos-Olivas R., Louis J. M., Clerot D., Gronenborn B., Gronenborn A. M. 2002; The structure of a replication initiator unites diverse aspects of nucleic acid metabolism. Proc Natl Acad Sci U S A 99:10310–10315 [CrossRef]
    [Google Scholar]
  9. Casey J. L., Koeller D. M., Ramin V. C., Klausner R. D., Harford J. B. 1989; Iron regulation of transferrin receptor mRNA levels requires iron-responsive elements and a rapid turnover determinant in the 3′ untranslated region of the mRNA. EMBO J 8:3693–3699
    [Google Scholar]
  10. Chu P. W., Keese P., Qiu B. S., Waterhouse P. M., Gerlach W. L. 1993; Putative full-length clones of the genomic DNA segments of subterranean clover stunt virus and identification of the segment coding for the viral coat protein. Virus Res 27:161–171 [CrossRef]
    [Google Scholar]
  11. Clote P., Ferre F., Kranakis E., Krizanc D. 2005; Structural RNA has lower folding energy than random RNA of the same dinucleotide frequency. RNA 11:578–591 [CrossRef]
    [Google Scholar]
  12. Dekker E. L., Woolston C. J., Xue Y. B., Cox B., Mullineaux P. M. 1991; Transcript mapping reveals different expression strategies for the bicistronic RNAs of the geminivirus wheat dwarf virus. Nucleic Acids Res 19:4075–4081 [CrossRef]
    [Google Scholar]
  13. Dong H., Deng Y., Chen J., Wang S., Peng S., Dai C., Fang Y., Shao J., Lou Y., Li D. 2007; An exploration of 3′-end processing signals and their tissue distribution in Oryza sativa . Gene 389:107–113 [CrossRef]
    [Google Scholar]
  14. Eagle P. A., Orozco B. M., Hanley-Bowdoin L. 1994; A DNA sequence required for geminivirus replication also mediates transcriptional regulation. Plant Cell 6:1157–1170 [CrossRef]
    [Google Scholar]
  15. Gebauer F., Hentze M. W. 2004; Molecular mechanisms of translational control. Nat Rev Mol Cell Biol 5:827–835
    [Google Scholar]
  16. Gilmartin G. M., Fleming E. S., Oetjen J. 1992; Activation of HIV-1 pre-mRNA 3′ processing in vitro requires both an upstream element and TAR. EMBO J 11:4419–4428
    [Google Scholar]
  17. Graveley B. R., Gilmartin G. M. 1996; A common mechanism for the enhancement of mRNA 3′ processing by U3 sequences in two distantly related lentiviruses. J Virol 70:1612–1617
    [Google Scholar]
  18. Herrera-Valencia V. A., Dugdale B., Harding R. M., Dale J. L. 2007; Mapping the 5′ ends of banana bunchy top virus gene transcripts. Arch Virol 152:615–620 [CrossRef]
    [Google Scholar]
  19. Hoekema A., Hirsch P. R., Hooykaas P. J. J., Schilperoort R. A. 1983; A binary plant vector strategy based on separation of vir - and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303:179–180 [CrossRef]
    [Google Scholar]
  20. Horser C., Harding R., Dale J. 2001; Banana bunchy top nanovirus DNA-1 encodes the ‘master’ replication initiation protein. J Gen Virol 82:459–464
    [Google Scholar]
  21. Hu J. M., Fu H. C., Lin C. H., Su H. J., Yeh H. H. 2007; Reassortment and concerted evolution in banana bunchy top virus genomes. J Virol 81:1746–1761 [CrossRef]
    [Google Scholar]
  22. Hull R., Geering A., Harper G., Lockhart B. E., Schoelz J. E. 2005; Family Caulimoviridae . In Virus Taxonomy: Eighth Report of the International Committee on Taxonomy of Viruses pp 385–396Edited by Fauquet C. M., Mayo M. A., Maniloff J., Desselberger U., Ball L. A. London: Elsevier/Academic Press;
    [Google Scholar]
  23. Katul L., Maiss E., Morozov S. Y., Vetten H. J. 1997; Analysis of six DNA components of the faba bean necrotic yellows virus genome and their structural affinity to related plant virus genomes. Virology 233:247–259 [CrossRef]
    [Google Scholar]
  24. Khromykh A. A., Meka H., Guyatt K. J., Westaway E. G. 2001; Essential role of cyclization sequences in flavivirus RNA replication. J Virol 75:6719–6728 [CrossRef]
    [Google Scholar]
  25. Laufs J., Jupin I., David C., Schumacher S., Heyraud-Nitschke F., Gronenborn B. 1995; Geminivirus replication: genetic and biochemical characterization of Rep protein function, a review. Biochimie 77:765–773 [CrossRef]
    [Google Scholar]
  26. Loeb D. D., Mack A. A., Tian R. 2002; A secondary structure that contains the 5′ and 3′ splice sites suppresses splicing of duck hepatitis B virus pregenomic RNA. J Virol 76:10195–10202 [CrossRef]
    [Google Scholar]
  27. Loke J. C., Stahlberg E. A., Strenski D. G., Haas B. J., Wood P. C., Li Q. Q. 2005; Compilation of mRNA polyadenylation signals in Arabidopsis revealed a new signal element and potential secondary structures. Plant Physiol 138:1457–1468 [CrossRef]
    [Google Scholar]
  28. Mason W. S., Burrell C. J., Casey J., Gerlich W. H., Howard C. R., Kann M., Lanford R., Newbold J., Schaefer S. other authors 2005; Family Hepadnaviridae . In Virus Taxonomy: Eighth Report of the International Committee on Taxonomy of Viruses pp 373–384Edited by Fauquet C. M., Mayo M. A., Maniloff J., Desselberger U., Ball L. A. London: Elsevier/Academic Press;
    [Google Scholar]
  29. Mazumder B., Seshadri V., Fox P. L. 2003; Translational control by the 3′-UTR: the ends specify the means. Trends Biochem Sci 28:91–98 [CrossRef]
    [Google Scholar]
  30. Mazumder B., Sampath P., Fox P. L. 2005; Regulation of macrophage ceruloplasmin gene expression: one paradigm of 3′-UTR-mediated translational control. Mol Cells 20:167–172 [CrossRef]
    [Google Scholar]
  31. Pfeiffer P., Hohn T. 1983; Involvement of reverse transcription in the replication of cauliflower mosaic virus: a detailed model and test of some aspects. Cell 33:781–789 [CrossRef]
    [Google Scholar]
  32. Ross J. 1995; mRNA stability in mammalian cells. Microbiol Rev 59:423–450
    [Google Scholar]
  33. Rothnie H. M., Chapdelaine Y., Hohn T. 1994; Pararetroviruses and retroviruses: a comparative review of viral structure and gene expression strategies. Adv Virus Res 44:1–67
    [Google Scholar]
  34. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn.Edited by Nolan C. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  35. Sanfacon H., Wieczorek A. 1992; Analysis of cauliflower mosaic virus RNAs in Brassica species showing a range of susceptibility to infection. Virology 190:30–39 [CrossRef]
    [Google Scholar]
  36. Sano Y., Wada M., Hashimoto Y., Matsumoto T., Kojima M. 1998; Sequences of ten circular ssDNA components associated with the milk vetch dwarf virus genome. J Gen Virol 79:3111–3118
    [Google Scholar]
  37. Seeger C., Mason W. S. 2000; Hepatitis B virus biology. Microbiol Mol Biol Rev 64:51–68 [CrossRef]
    [Google Scholar]
  38. Shirasawa-Seo N., Sano Y., Nakamura S., Murakami T., Seo S., Ohashi Y., Hashimoto Y., Matsumoto T. 2005; Characteristics of the promoters derived from the single-stranded DNA components of Milk vetch dwarf virus in transgenic tobacco. J Gen Virol 86:1851–1860 [CrossRef]
    [Google Scholar]
  39. Sunter G., Hartitz M. D., Bisaro D. M. 1993; Tomato golden mosaic virus leftward gene expression: autoregulation of geminivirus replication protein. Virology 195:275–280 [CrossRef]
    [Google Scholar]
  40. Timchenko T., de Kouchkovsky F., Katul L., David C., Vetten H. J., Gronenborn B. 1999; A single Rep protein initiates replication of multiple genome components of faba bean necrotic yellows virus, a single-stranded DNA virus of plants. J Virol 73:10173–10182
    [Google Scholar]
  41. Timchenko T., Katul L., Sano Y., de Kouchkovsky F., Vetten H. J., Gronenborn B. 2000; The master Rep concept in nanovirus replication: identification of missing genome components and potential for natural genetic reassortment. Virology 274:189–195 [CrossRef]
    [Google Scholar]
  42. Timchenko T., Katul L., Aronson M., Vega-Arreguin J. C., Ramirez B. C., Vetten H. J., Gronenborn B. 2006; Infectivity of nanovirus DNAs: induction of disease by cloned genome components of Faba bean necrotic yellows virus . J Gen Virol 87:1735–1743 [CrossRef]
    [Google Scholar]
  43. Vega-Rocha S., Byeon I. J., Gronenborn B., Gronenborn A. M., Campos-Olivas R. 2007a; Solution structure, divalent metal and DNA binding of the endonuclease domain from the replication initiation protein from porcine circovirus 2. J Mol Biol 367:473–487 [CrossRef]
    [Google Scholar]
  44. Vega-Rocha S., Gronenborn B., Gronenborn A. M., Campos-Olivas R. 2007b; Solution structure of the endonuclease domain from the master replication initiator protein of the nanovirus faba bean necrotic yellows virus and comparison with the corresponding geminivirus and circovirus structures. Biochemistry 46:6201–6212 [CrossRef]
    [Google Scholar]
  45. Vetten H. J., Chu P. W. G., Dale J. L., Harding R., Hu J., Katul L., Kojima M., Randles J. W., Sano Y., Thomas J. E. 2005; Family Nanoviridae . In Virus Taxonomy: Eighth Report of the International Committee on Taxonomy of Viruses pp 343–352Edited by Fauquet C. M., Mayo M. A., Maniloff J., Desselberger U., Ball L. A. London: Elsevier/Academic Press;
    [Google Scholar]
  46. Wanitchakorn R., Harding R. M., Dale J. L. 1997; Banana bunchy top virus DNA-3 encodes the viral coat protein. Arch Virol 142:1673–1680 [CrossRef]
    [Google Scholar]
  47. Wanitchakorn R., Hafner G. J., Harding R. M., Dale J. L. 2000; Functional analysis of proteins encoded by banana bunchy top virus DNA-4 to -6. J Gen Virol 81:299–306
    [Google Scholar]
  48. Wilhelm M., Wilhelm F. X. 2001; Reverse transcription of retroviruses and LTR retrotransposons. Cell Mol Life Sci 58:1246–1262 [CrossRef]
    [Google Scholar]
  49. Wu R.-Y., You L.-R., Soong T.-S. 1994; Nucleotide sequences of two circular single-stranded DNAs associated with banana bunchy top virus. Phytopathology 84:952–958 [CrossRef]
    [Google Scholar]
  50. Zuker M. 2003; Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83352-0
Loading
/content/journal/jgv/10.1099/vir.0.83352-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed