1887

Abstract

The genus (NPV) of the family can be subdivided phylogenetically into two groups. The same division can be made on the basis of their budded virus (BV) envelope fusion protein. Group I NPVs are characterized by the presence of a GP64-like major envelope fusion protein, which is involved in viral attachment and the fusion of virus and cell membrane, and is required for budding of progeny nucleocapsids. Group II NPVs have an envelope fusion protein unrelated to GP64, named F. In contrast to GP64, F proteins are found in all baculoviruses, but they are not functional as envelope fusion proteins in group I NPVs. multiple NPV (AcMNPV) lacking GP64 can be pseudotyped by the F protein of multiple NPV (SeMNPV), suggesting that F proteins are functionally analogous to GP64. GP64 homologues are thought to have been acquired by group I NPVs during evolution, thereby giving these viruses a selective advantage and obviating the need for a functional F protein. To address this supposition experimentally, attempts were made to pseudotype a group II NPV, SeMNPV, with GP64. Transfection of an -null SeMNPV bacmid into 301 cells did not result in the production of infectious BVs. This defect was rescued by insertion of SeMNPV , but not by insertion of AcMNPV . This suggests that the functional analogy between GP64 and F is not readily reciprocal and that F proteins from group II NPVs may provide additional functions in BV formation that are lacking in the GP64 type of fusion protein.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83342-0
2008-02-01
2019-11-13
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/2/424.html?itemId=/content/journal/jgv/10.1099/vir.0.83342-0&mimeType=html&fmt=ahah

References

  1. Adams, J. R. & McClintock, J. T. ( 1991; ). Nuclear polyhedrosis viruses of insects. In Atlas of Invertebrate Viruses, pp. 87–204. Edited by J. R. Adams & J. R. Bonami. Boca Raton, FL: CRC Press.
  2. Ali, A. & Nayak, D. P. ( 2000; ). Assembly of Sendai virus: M protein interacts with F and HN proteins and with the cytoplasmic tail and transmembrane domain of F protein. Virology 276, 289–303.[CrossRef]
    [Google Scholar]
  3. Barsoum, J., Brown, R., McKee, M. & Boyce, F. M. ( 1997; ). Efficient transduction of mammalian cells by a recombinant baculovirus having the vesicular stomatitis virus G glycoprotein. Hum Gene Ther 8, 2011–2018.[CrossRef]
    [Google Scholar]
  4. Bilsel, P., Castrucci, M. R. & Kawaoka, Y. ( 1993; ). Mutations in the cytoplasmic tail of influenza A virus neuraminidase affect incorporation into virions. J Virol 67, 6762–6767.
    [Google Scholar]
  5. Blissard, G. W. & Wenz, J. R. ( 1992; ). Baculovirus gp64 envelope glycoprotein is sufficient to mediate pH-dependent membrane fusion. J Virol 66, 6829–6835.
    [Google Scholar]
  6. Briggs, J. A., Wilk, T. & Fuller, S. D. ( 2003; ). Do lipid rafts mediate virus assembly and pseudotyping? J Gen Virol 84, 757–768.[CrossRef]
    [Google Scholar]
  7. Broer, R., Heldens, J. G., van Strien, E. A., Zuidema, D. & Vlak, J. M. ( 1998; ). Specificity of multiple homologous genomic regions in Spodoptera exigua nucleopolyhedrovirus DNA replication. J Gen Virol 79, 1563–1572.
    [Google Scholar]
  8. Bulach, D. M., Kumar, C. A., Zaia, A., Liang, B. & Tribe, D. E. ( 1999; ). Group II nucleopolyhedrovirus subgroups revealed by phylogenetic analysis of polyhedrin and DNA polymerase gene sequences. J Invertebr Pathol 73, 59–73.[CrossRef]
    [Google Scholar]
  9. Freedman-Faulstich, E. Z. & Fuller, F. J. ( 1990; ). Nucleotide sequence of the tick-borne, orthomyxo-like Dhori/Indian/1313/61 virus envelope gene. Virology 175, 10–18.[CrossRef]
    [Google Scholar]
  10. Gelernter, W. D. & Federici, B. A. ( 1986; ). Isolation, identification, and determination of virulence of a nuclear polyhedrosis virus from the beet armyworm, Spodoptera exigua (Lepidoptera: Noctuidae). Environ Entomol 15, 240–245.[CrossRef]
    [Google Scholar]
  11. Granados, R. R. ( 1978; ). Early events in the infection of Heliothis zea midgut cells by a baculovirus. Virology 90, 170–174.[CrossRef]
    [Google Scholar]
  12. Granados, R. R. & Lawler, K. A. ( 1981; ). In vivo pathway of Autographa californica baculovirus invasion and infection. Virology 108, 297–308.[CrossRef]
    [Google Scholar]
  13. Gross, C. H., Wolgamot, G. M., Russell, R. L., Pearson, M. N. & Rohrmann, G. F. ( 1993; ). A baculovirus encoded 16-kDa glycoprotein localizes near the nuclear membrane of infected cells. Virology 192, 386–390.[CrossRef]
    [Google Scholar]
  14. Hara, K., Funakoshi, M. & Kawarabata, T. ( 1995; ). A cloned cell line of Spodoptera exigua has a highly increased susceptibility to the Spodoptera exigua nuclear polyhedrosis virus. Can J Microbiol 41, 1111–1116.[CrossRef]
    [Google Scholar]
  15. Hayakawa, T., Rohrmann, G. F. & Hashimoto, Y. ( 2000; ). Patterns of genome organization and content in lepidopteran baculoviruses. Virology 278, 1–12.[CrossRef]
    [Google Scholar]
  16. Hefferon, K. L., Oomens, A. G., Monsma, S. A., Finnerty, C. M. & Blissard, G. W. ( 1999; ). Host cell receptor binding by baculovirus GP64 and kinetics of virion entry. Virology 258, 455–468.[CrossRef]
    [Google Scholar]
  17. Herniou, E. A., Luque, T., Chen, X., Vlak, J. M., Winstanley, D., Cory, J. S. & O'Reilly, D. R. ( 2001; ). Use of whole genome sequence data to infer baculovirus phylogeny. J Virol 75, 8117–8126.[CrossRef]
    [Google Scholar]
  18. Herniou, E. A., Olszewski, J. A., Cory, J. S. & O'Reilly, D. R. ( 2003; ). The genome sequence and evolution of baculoviruses. Annu Rev Entomol 48, 211–234.[CrossRef]
    [Google Scholar]
  19. Horton, H. M. & Burand, J. P. ( 1993; ). Saturable attachment sites for polyhedron-derived baculovirus on insect cells and evidence for entry via direct membrane fusion. J Virol 67, 1860–1868.
    [Google Scholar]
  20. IJkel, W. F. J., van Strien, E. A., Heldens, J. G. M., Broer, R., Zuidema, D., Goldbach, R. W. & Vlak, J. M. ( 1999; ). Sequence and organization of the Spodoptera exigua multicapsid nucleopolyhedrovirus genome. J Gen Virol 80, 3289–3304.
    [Google Scholar]
  21. IJkel, W. F. J., Westenberg, M., Goldbach, R. W., Blissard, G. W., Vlak, J. M. & Zuidema, D. ( 2000; ). A novel baculovirus envelope fusion protein with a proprotein convertase cleavage site. Virology 275, 30–41.[CrossRef]
    [Google Scholar]
  22. Jehle, J. A., Blissard, G. W., Bonning, B. C., Cory, J. S., Herniou, E. A., Rohrmann, G. F., Theilmann, D. A., Thiem, S. M. & Vlak, J. M. ( 2006; ). On the classification and nomenclature of baculoviruses: a proposal for revision. Arch Virol 151, 1257–1266.[CrossRef]
    [Google Scholar]
  23. Kumar, M., Bradow, B. P. & Zimmerberg, J. ( 2003; ). Large-scale production of pseudotyped lentiviral vectors using baculovirus GP64. Hum Gene Ther 14, 67–77.[CrossRef]
    [Google Scholar]
  24. Landau, N. R., Page, K. A. & Littman, D. R. ( 1991; ). Pseudotyping with human T-cell leukemia virus type I broadens the human immunodeficiency virus host range. J Virol 65, 162–169.
    [Google Scholar]
  25. Liang, C., Song, J. & Chen, X. ( 2005; ). The GP64 protein of Autographa californica multiple nucleopolyhedrovirus rescues Helicoverpa armigera nucleopolyhedrovirus transduction in mammalian cells. J Gen Virol 86, 1629–1635.[CrossRef]
    [Google Scholar]
  26. Long, G., Pan, X., Westenberg, M. & Vlak, J. M. ( 2006a; ). Functional role of the cytoplasmic tail domain of the major envelope fusion protein of group II baculoviruses. J Virol 80, 11226–11234.[CrossRef]
    [Google Scholar]
  27. Long, G., Westenberg, M., Wang, H., Vlak, J. M. & Hu, Z. ( 2006b; ). Function, oligomerization and N-linked glycosylation of the Helicoverpa armigera single nucleopolyhedrovirus envelope fusion protein. J Gen Virol 87, 839–846.[CrossRef]
    [Google Scholar]
  28. Luckow, V. A., Lee, S. C., Barry, G. F. & Olins, P. O. ( 1993; ). Efficient generation of infectious recombinant baculoviruses by site-specific transposon-mediated insertion of foreign genes into a baculovirus genome propagated in Escherichia coli. J Virol 67, 4566–4579.
    [Google Scholar]
  29. Lung, O., Westenberg, M., Vlak, J. M., Zuidema, D. & Blissard, G. W. ( 2002; ). Pseudotyping Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV): F proteins from group II NPVs are functionally analogous to AcMNPV GP64. J Virol 76, 5729–5736.[CrossRef]
    [Google Scholar]
  30. Lung, O. Y., Cruz-Alvarez, M. & Blissard, G. W. ( 2003; ). Ac23, an envelope fusion protein homolog in the baculovirus Autographa californica multicapsid nucleopolyhedrovirus, is a viral pathogenicity factor. J Virol 77, 328–339.[CrossRef]
    [Google Scholar]
  31. Malik, H. S., Henikoff, S. & Eickbush, T. H. ( 2000; ). Poised for contagion: evolutionary origins of the infectious abilities of invertebrate retroviruses. Genome Res 10, 1307–1318.[CrossRef]
    [Google Scholar]
  32. Mangor, J. T., Monsma, S. A., Johnson, M. C. & Blissard, G. W. ( 2001; ). A GP64-null baculovirus pseudotyped with vesicular stomatitis virus G protein. J Virol 75, 2544–2556.[CrossRef]
    [Google Scholar]
  33. Mebatsion, T., Konig, M. & Conzelmann, K. K. ( 1996; ). Budding of rabies virus particles in the absence of the spike glycoprotein. Cell 84, 941–951.[CrossRef]
    [Google Scholar]
  34. Monsma, S. A., Oomens, A. G. & Blissard, G. W. ( 1996; ). The GP64 envelope fusion protein is an essential baculovirus protein required for cell-to-cell transmission of infection. J Virol 70, 4607–4616.
    [Google Scholar]
  35. Morse, M. A., Marriott, A. C. & Nuttall, P. A. ( 1992; ). The glycoprotein of Thogoto virus (a tick-borne orthomyxo-like virus) is related to the baculovirus glycoprotein GP64. Virology 186, 640–646.[CrossRef]
    [Google Scholar]
  36. Muñoz, D., Castillejo, J. I. & Caballero, P. ( 1998; ). Naturally occurring deletion mutants are parasitic genotypes in a wild-type nucleopolyhedrovirus population of Spodoptera exigua. Appl Environ Microbiol 64, 4372–4377.
    [Google Scholar]
  37. Muyrers, J. P., Zhang, Y., Testa, G. & Stewart, A. F. ( 1999; ). Rapid modification of bacterial artificial chromosomes by ET-recombination. Nucleic Acids Res 27, 1555–1557.[CrossRef]
    [Google Scholar]
  38. Oomens, A. G. & Blissard, G. W. ( 1999; ). Requirement for GP64 to drive efficient budding of Autographa californica multicapsid nucleopolyhedrovirus. Virology 254, 297–314.[CrossRef]
    [Google Scholar]
  39. Owen, K. E. & Kuhn, R. J. ( 1997; ). Alphavirus budding is dependent on the interaction between the nucleocapsid and hydrophobic amino acids on the cytoplasmic domain of the E2 envelope glycoprotein. Virology 230, 187–196.[CrossRef]
    [Google Scholar]
  40. Pearson, M. N., Groten, C. & Rohrmann, G. F. ( 2000; ). Identification of the Lymantria dispar nucleopolyhedrovirus envelope fusion protein provides evidence for a phylogenetic division of the Baculoviridae. J Virol 74, 6126–6131.[CrossRef]
    [Google Scholar]
  41. Pearson, M. N., Russell, R. L. & Rohrmann, G. F. ( 2001; ). Characterization of a baculovirus-encoded protein that is associated with infected-cell membranes and budded virions. Virology 291, 22–31.[CrossRef]
    [Google Scholar]
  42. Pijlman, G. P., Dortmans, J. C., Vermeesch, A. M., Yang, K., Martens, D. E., Goldbach, R. W. & Vlak, J. M. ( 2002; ). Pivotal role of the non-hr origin of DNA replication in the genesis of defective interfering baculoviruses. J Virol 76, 5605–5611.[CrossRef]
    [Google Scholar]
  43. Robison, C. S. & Whitt, M. A. ( 2000; ). The membrane-proximal stem region of vesicular stomatitis virus G protein confers efficient virus assembly. J Virol 74, 2239–2246.[CrossRef]
    [Google Scholar]
  44. Rohrmann, G. F. & Karplus, P. A. ( 2001; ). Relatedness of baculovirus and gypsy retrotransposon envelope proteins. BMC Evol Biol 1, 1 [CrossRef]
    [Google Scholar]
  45. Shioda, T. & Shibuta, H. ( 1990; ). Production of human immunodeficiency virus (HIV)-like particles from cells infected with recombinant vaccinia viruses carrying the gag gene of HIV. Virology 175, 139–148.[CrossRef]
    [Google Scholar]
  46. Shizuya, H., Birren, B., Kim, U. J., Mancino, V., Slepak, T., Tachiiri, Y. & Simon, M. ( 1992; ). Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc Natl Acad Sci U S A 89, 8794–8797.[CrossRef]
    [Google Scholar]
  47. Song, C., Dubay, S. R. & Hunter, E. ( 2003; ). A tyrosine motif in the cytoplasmic domain of Mason-Pfizer monkey virus is essential for the incorporation of glycoprotein into virions. J Virol 77, 5192–5200.[CrossRef]
    [Google Scholar]
  48. Terzian, C., Pelisson, A. & Bucheton, A. ( 2001; ). Evolution and phylogeny of insect endogenous retroviruses. BMC Evol Biol 1, 3 [CrossRef]
    [Google Scholar]
  49. Volkman, L. E. & Goldsmith, P. A. ( 1985; ). Mechanism of neutralization of budded Autographa californica nuclear polyhedrosis virus by a monoclonal antibody: inhibition of entry by adsorptive endocytosis. Virology 143, 185–195.[CrossRef]
    [Google Scholar]
  50. Volkman, L. E. & Summers, M. D. ( 1977; ). Autographa californica nuclear polyhedrosis virus: comparative infectivity of the occluded, alkali-liberated, and nonoccluded forms. J Invertebr Pathol 30, 102–103.[CrossRef]
    [Google Scholar]
  51. Wang, K., Boysen, C., Shizuya, H., Simon, M. I. & Hood, L. ( 1997; ). Complete nucleotide sequence of two generations of a bacterial artificial chromosome cloning vector. Biotechniques 23, 992–994.
    [Google Scholar]
  52. Westenberg, M., Wang, H., IJkel, W. F., Goldbach, R. W., Vlak, J. M. & Zuidema, D. ( 2002; ). Furin is involved in baculovirus envelope fusion protein activation. J Virol 76, 178–184.[CrossRef]
    [Google Scholar]
  53. Westenberg, M., Veenman, F., Roode, E. C., Goldbach, R. W., Vlak, J. M. & Zuidema, D. ( 2004; ). Functional analysis of the putative fusion domain of the baculovirus envelope fusion protein F. J Virol 78, 6946–6954.[CrossRef]
    [Google Scholar]
  54. Zhang, S. X., Han, Y. & Blissard, G. W. ( 2003; ). Palmitoylation of the Autographa californica multicapsid nucleopolyhedrovirus envelope glycoprotein GP64: mapping, functional studies, and lipid rafts. J Virol 77, 6265–6273.[CrossRef]
    [Google Scholar]
  55. Zhao, H., Lindqvist, B., Garoff, H., von Bonsdorff, C. H. & Liljestrom, P. ( 1994; ). A tyrosine-based motif in the cytoplasmic domain of the alphavirus envelope protein is essential for budding. EMBO J 13, 4204–4211.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83342-0
Loading
/content/journal/jgv/10.1099/vir.0.83342-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error