1887

Abstract

If we could rewind the tape of evolution and play it again, would it turn out to be similar to or different from what we know? Obviously, this key question can only be addressed by fragmentary experimental approaches. Twenty-two years ago, we described the establishment of BHK-21 cells persistently infected with foot-and-mouth disease virus (FMDV), a system that displayed as its major biological feature a coevolution of the cells and the resident virus in the course of persistence. Now we report the establishment of two persistently infected cell lines in parallel, starting with the same clones of FMDV and BHK-21 cells used 22 years ago. We have asked whether the evolution of the two newly established cell lines and of the earlier cell line would be similar or different. The main conclusions of the study are: (i) the basic behaviour characterized by virus–cell coevolution is similar in the three carrier cell lines, despite differences in some genetic alterations of FMDV; (ii) a strikingly parallel behaviour has been observed with the two newly established cell lines passaged in parallel, unveiling a deterministic virus behaviour during persistence; and (iii) selective RT-PCR amplifications have detected imbalances in the proportion of positive- versus negative-strand viral RNA, mediated by both viral and cellular factors. The results confirm coevolution of cells and virus as a major and reproducible feature of FMDV persistence in cell culture, and suggest that rapidly evolving viruses may constitute adequate test systems to probe the influence of historical contingency on evolutionary events.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83312-0
2008-01-01
2020-01-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/1/232.html?itemId=/content/journal/jgv/10.1099/vir.0.83312-0&mimeType=html&fmt=ahah

References

  1. Ahmed, R. & Chen, S. Y. (editors) ( 1999; ). Persistent Viral Infections. New York: Wiley.
  2. Ahmed, R., Canning, W. M., Kauffman, R. S., Sharpe, A. H., Hallum, J. V. & Fields, B. N. ( 1981; ). Role of the host cell in persistent viral infection: coevolution of L cells and reovirus during persistent infection. Cell 25, 325–332.[CrossRef]
    [Google Scholar]
  3. Airaksinen, A., Pariente, N., Menendez-Arias, L. & Domingo, E. ( 2003; ). Curing of foot-and-mouth disease virus from persistently infected cells by ribavirin involves enhanced mutagenesis. Virology 311, 339–349.[CrossRef]
    [Google Scholar]
  4. Andreoletti, L., Hober, D., Becquart, P., Belaich, S., Copin, M. C., Lambert, V. & Wattre, P. ( 1997; ). Experimental CVB3-induced chronic myocarditis in two murine strains: evidence of interrelationships between virus replication and myocardial damage in persistent cardiac infection. J Med Virol 52, 206–214.[CrossRef]
    [Google Scholar]
  5. Batschelet, E., Domingo, E. & Weissmann, C. ( 1976; ). The proportion of revertant and mutant phage in a growing population, as a function of mutation and growth rate. Gene 1, 27–32.[CrossRef]
    [Google Scholar]
  6. Borrego, B., Novella, I. S., Giralt, E., Andreu, D. & Domingo, E. ( 1993; ). Distinct repertoire of antigenic variants of foot-and-mouth disease virus in the presence or absence of immune selection. J Virol 67, 6071–6079.
    [Google Scholar]
  7. Borzakian, S., Pelletier, I., Calvez, V. & Colbere-Garapin, F. ( 1993; ). Precise missense and silent point mutations are fixed in the genomes of poliovirus mutants from persistently infected cells. J Virol 67, 2914–2917.
    [Google Scholar]
  8. Bushman, F. ( 2002; ). Lateral DNA Transfer. Mechanisms and Consequences. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  9. Calvez, V., Pelletier, I., Couderc, T., Pavio-Guedo, N., Blondel, B. & Colbere-Garapin, F. ( 1995; ). Cell clones cured of persistent poliovirus infection display selective permissivity to the wild-type poliovirus strain Mahoney and partial resistance to the attenuated Sabin 1 strain and Mahoney mutants. Virology 212, 309–322.[CrossRef]
    [Google Scholar]
  10. Charpentier, N., Davila, M., Domingo, E. & Escarmis, C. ( 1996; ). Long-term, large-population passage of aphthovirus can generate and amplify defective noninterfering particles deleted in the leader protease gene. Virology 223, 10–18.[CrossRef]
    [Google Scholar]
  11. Chen, W. & Baric, R. S. ( 1996; ). Molecular anatomy of mouse hepatitis virus persistence: coevolution of increased host cell resistance and virus virulence. J Virol 70, 3947–3960.
    [Google Scholar]
  12. Chiarini, A., Arista, S., Giammanco, A. & Sinatra, A. ( 1983; ). Rotavirus persistence in cell cultures: selection of resistant cells in the presence of fetal calf serum. J Gen Virol 64, 1101–1110.[CrossRef]
    [Google Scholar]
  13. Chumakov, K. M., Dragunsky, E. M., Norwood, L. P., Douthitt, M. P., Ran, Y., Taffs, R. E., Ridge, J. & Levenbook, I. S. ( 1994; ). Consistent selection of mutations in the 5′-untranslated region of oral poliovirus vaccine upon passaging in vitro. J Med Virol 42, 79–85.[CrossRef]
    [Google Scholar]
  14. Conway Morris, S. ( 1998; ). The Crucible of Creation. The Burgess Shale and the Rise of Animals. Oxford: Oxford University Press.
  15. Couderc, T., Guedo, N., Calvez, V., Pelletier, I., Hogle, J., Colbere-Garapin, F. & Blondel, B. ( 1994; ). Substitutions in the capsids of poliovirus mutants selected in human neuroblastoma cells confer on the Mahoney type 1 strain a phenotype neurovirulent in mice. J Virol 68, 8386–8391.
    [Google Scholar]
  16. Couñago, R., Chen, S. & Shamoo, Y. ( 2006; ). In vivo molecular evolution reveals biophysical origins of organismal fitness. Mol Cell 22, 441–449.[CrossRef]
    [Google Scholar]
  17. Cummings, P. J. & Rinaldo, C. R., Jr ( 1989; ). Coevolution of virulent virus and resistant cells as a mechanism of persistence of herpes simplex virus type 1 in a human T lymphoblastoid cell line. J Gen Virol 70, 97–106.[CrossRef]
    [Google Scholar]
  18. Cunningham, L., Bowles, N. E., Lane, R. J., Dubowitz, V. & Archard, L. C. ( 1990; ). Persistence of enteroviral RNA in chronic fatigue syndrome is associated with the abnormal production of equal amounts of positive and negative strands of enteroviral RNA. J Gen Virol 71, 1399–1402.[CrossRef]
    [Google Scholar]
  19. de la Torre, J. C., Davila, M., Sobrino, F., Ortin, J. & Domingo, E. ( 1985; ). Establishment of cell lines persistently infected with foot-and-mouth disease virus. Virology 145, 24–35.[CrossRef]
    [Google Scholar]
  20. de la Torre, J. C., Alarcón, B., Martínez-Salas, E., Carrasco, L. & Domingo, E. ( 1987; ). Ribavirin cures cells of a persistent infection with foot-and-mouth disease virus in vitro. J Virol 61, 233–235.
    [Google Scholar]
  21. de la Torre, J. C., Martínez-Salas, E., Diez, J., Villaverde, A., Gebauer, F., Rocha, E., Dávila, M. & Domingo, E. ( 1988; ). Coevolution of cells and viruses in a persistent infection of foot-and-mouth disease virus in cell culture. J Virol 62, 2050–2058.
    [Google Scholar]
  22. de la Torre, J. C., Martínez-Salas, E., Díez, J. & Domingo, E. ( 1989a; ). Extensive cell heterogeneity during persistent infection with foot-and-mouth disease virus. J Virol 63, 59–63.
    [Google Scholar]
  23. de la Torre, J. C., de la Luna, S., Diez, J. & Domingo, E. ( 1989b; ). Resistance to foot-and-mouth disease virus mediated by trans-acting cellular products. J Virol 63, 2385–2387.
    [Google Scholar]
  24. de la Torre, J. C., Giachetti, C., Semler, B. L. & Holland, J. J. ( 1992; ). High frequency of single-base transitions and extreme frequency of precise multiple-base reversion mutations in poliovirus. Proc Natl Acad Sci U S A 89, 2531–2535.[CrossRef]
    [Google Scholar]
  25. Delli Bovi, P., De Simone, V., Giordano, R. & Amati, P. ( 1984; ). Polyomavirus growth and persistence in Friend erythroleukemic cells. J Virol 49, 566–571.
    [Google Scholar]
  26. Dermody, T. S., Nibert, M. L., Wetzel, J. D., Tong, X. & Fields, B. N. ( 1993; ). Cells and viruses with mutations affecting viral entry are selected during persistent infections of L cells with mammalian reoviruses. J Virol 67, 2055–2063.
    [Google Scholar]
  27. Díez, J., Dávila, M., Escarmís, C., Mateu, M. G., Dominguez, J., Pérez, J. J., Giralt, E., Melero, J. A. & Domingo, E. ( 1990a; ). Unique amino acid substitutions in the capsid proteins of foot-and-mouth disease virus from a persistent infection in cell culture. J Virol 64, 5519–5528.
    [Google Scholar]
  28. Díez, J., Hofner, M., Domingo, E. & Donaldson, A. I. ( 1990b; ). Foot-and-mouth disease virus strains isolated from persistently infected cell cultures are attenuated for mice and cattle. Virus Res 18, 3–7.[CrossRef]
    [Google Scholar]
  29. Domingo, E., Biebricher, C., Eigen, M. & Holland, J. J. ( 2001; ). Quasispecies and RNA Virus Evolution: Principles and Consequences. Austin, TX: Landes Bioscience.
  30. Drake, J. W. & Holland, J. J. ( 1999; ). Mutation rates among RNA viruses. Proc Natl Acad Sci U S A 96, 13910–13913.[CrossRef]
    [Google Scholar]
  31. Eigen, M. ( 1992; ). Steps Towards Life. Oxford: Oxford University Press.
  32. Eigen, M. & Schuster, P. ( 1979; ). The Hypercycle. A Principle of Natural Self-Organization. Berlin: Springer.
  33. Escarmís, C., Dávila, M., Charpentier, N., Bracho, A., Moya, A. & Domingo, E. ( 1996; ). Genetic lesions associated with Muller's ratchet in an RNA virus. J Mol Biol 264, 255–267.[CrossRef]
    [Google Scholar]
  34. Escarmís, C., Carrillo, E. C., Ferrer, M., Arriaza, J. F., Lopez, N., Tami, C., Verdaguer, N., Domingo, E. & Franze-Fernandez, M. T. ( 1998; ). Rapid selection in modified BHK-21 cells of a foot-and-mouth disease virus variant showing alterations in cell tropism. J Virol 72, 10171–10179.
    [Google Scholar]
  35. Escarmís, C., Gomez-Mariano, G., Davila, M., Lazaro, E. & Domingo, E. ( 2002; ). Resistance to extinction of low fitness virus subjected to plaque-to-plaque transfers: diversification by mutation clustering. J Mol Biol 315, 647–661.[CrossRef]
    [Google Scholar]
  36. Fernández, P. & Solé, R. V. ( 2007; ). Neutral fitness landscapes in signalling networks. J R Soc Interface 4, 41–47.[CrossRef]
    [Google Scholar]
  37. Fontana, W. ( 2002; ). Modelling ‘evo-devo’ with RNA. Bioessays 24, 1164–1177.[CrossRef]
    [Google Scholar]
  38. Fontana, W. & Schuster, P. ( 1998; ). Shaping space: the possible and the attainable in RNA genotype-phenotype mapping. J Theor Biol 194, 491–515.[CrossRef]
    [Google Scholar]
  39. Forterre, P. ( 2006; ). The origin of viruses and their possible roles in major evolutionary transitions. Virus Res 117, 5–16.[CrossRef]
    [Google Scholar]
  40. Futuyma, D. J. & Slatkin, M. (editors) ( 1983; ). Coevolution. Sunderland, MA: Sinauer Associates.
  41. García-Arriaza, J., Manrubia, S. C., Toja, M., Domingo, E. & Escarmís, C. ( 2004; ). Evolutionary transition toward defective RNAs that are infectious by complementation. J Virol 78, 11678–11685.[CrossRef]
    [Google Scholar]
  42. Gould, S. J. ( 1989; ). Wonderful Life: The Burgess Shale and the Nature of History. New York: W. W. Norton.
  43. Grande-Pérez, A., Gomez-Mariano, G., Lowenstein, P. R. & Domingo, E. ( 2005; ). Mutagenesis-induced, large fitness variations with an invariant arenavirus consensus genomic nucleotide sequence. J Virol 79, 10451–10459.[CrossRef]
    [Google Scholar]
  44. Guinea, R. & Carrasco, L. ( 1990; ). Phospholipid biosynthesis and poliovirus genome replication, two coupled phenomena. EMBO J 9, 2011–2016.
    [Google Scholar]
  45. Herrera, M., García-Arriaza, J., Pariente, N., Escarmís, C. & Domingo, E. ( 2007; ). Molecular basis for a lack of correlation between viral fitness and cell killing capacity. PLoS Pathog 3, e53 [CrossRef]
    [Google Scholar]
  46. Hohenadl, C., Klingel, K., Mertsching, J., Hofschneider, P. H. & Kandolf, R. ( 1991; ). Strand-specific detection of enteroviral RNA in myocardial tissue by in situ hybridization. Mol Cell Probes 5, 11–20.[CrossRef]
    [Google Scholar]
  47. Holguin, A. ( 1996; ). Variantes genéricos y fenotípicos en cuasiespecies del virus de la fiebre aftosa y del virus de la inmunodeficiencia humana. PhD thesis, Universidad Autónoma de Madrid, Spain (in Spanish).
  48. Holland, J. J., Kennedy, S. I. T., Semler, B. L., Jones, C. L., Roux, L. & Grabau, E. A. ( 1980; ). Defective interfering RNA viruses and the host-cell response. In Virus-host Interactions: Viral Invasion, Persistence, and Disease (Comprehensive Virology, vol. 16), pp. 137–192. Edited by H. Fraenkel-Conrat & R. R. Wagner. London: Plenum Press.
  49. Holland, J. J., Spindler, K., Horodyski, F., Grabau, E., Nichol, S. & VandePol, S. ( 1982; ). Rapid evolution of RNA genomes. Science 215, 1577–1585.[CrossRef]
    [Google Scholar]
  50. Igarashi, A., Koo, R. & Stollar, V. ( 1977; ). Evolution and properties of Aedes albopictus cell cultures persistently infected with sindbis virus. Virology 82, 69–83.[CrossRef]
    [Google Scholar]
  51. Irurzun, A., Perez, L. & Carrasco, L. ( 1992; ). Involvement of membrane traffic in the replication of poliovirus genomes: effects of brefeldin A. Virology 191, 166–175.[CrossRef]
    [Google Scholar]
  52. Joyce, G. F. ( 2004; ). Directed evolution of nucleic acid enzymes. Annu Rev Biochem 73, 791–836.[CrossRef]
    [Google Scholar]
  53. Komurian-Pradel, F., Perret, M., Deiman, B., Sodoyer, M., Lotteau, V., Paranhos-Baccala, G. & Andre, P. ( 2004; ). Strand specific quantitative real-time PCR to study replication of hepatitis C virus genome. J Virol Methods 116, 103–106.[CrossRef]
    [Google Scholar]
  54. Lea, S., Hernández, J., Blakemore, W., Brocchi, E., Curry, S., Domingo, E., Fry, E., Abu-Ghazaleh, R., King, A. & other authors ( 1994; ). The structure and antigenicity of a type C foot-and-mouth disease virus. Structure 2, 123–139.[CrossRef]
    [Google Scholar]
  55. Lehman, N. ( 2004; ). Assessing the likelihood of recurrence during RNA evolution in vitro. Artif Life 10, 1–22.[CrossRef]
    [Google Scholar]
  56. Lu, Z., Rezapkin, G. V., Douthitt, M. P., Run, Y., Asher, D. M., Levenbook, I. S. & Chumakov, K. M. ( 1996; ). Limited genetic changes in the Sabin 1 strain of poliovirus occurring in the central nervous system of monkeys. J Gen Virol 77, 273–280.[CrossRef]
    [Google Scholar]
  57. Mahy, B. W. ( 2005; ). Foot-and-mouth disease virus. Curr Top Microbiol Immunol 288, 1–8.
    [Google Scholar]
  58. Martín Hernández, A. M., Carrillo, E. C., Sevilla, N. & Domingo, E. ( 1994; ). Rapid cell variation can determine the establishment of a persistent viral infection. Proc Natl Acad Sci U S A 91, 3705–3709.[CrossRef]
    [Google Scholar]
  59. Mateo, R. & Mateu, M. G. ( 2007; ). Deterministic, compensatory mutational events in the capsid of foot-and-mouth disease virus in response to the introduction of mutations found in viruses from persistent infections. J Virol 81, 1879–1887.[CrossRef]
    [Google Scholar]
  60. Mateu, M. G., Martínez, M. A., Rocha, E., Andreu, D., Parejo, J., Giralt, E., Sobrino, F. & Domingo, E. ( 1989; ). Implications of a quasispecies genome structure: effect of frequent, naturally occurring amino acid substitutions on the antigenicity of foot-and-mouth disease virus. Proc Natl Acad Sci U S A 86, 5883–5887.[CrossRef]
    [Google Scholar]
  61. Mateu, M. G., Hernández, J., Martínez, M. A., Feigelstock, D., Lea, S., Pérez, J. J., Giralt, E., Stuart, D., Palma, E. L. & Domingo, E. ( 1994; ). Antigenic heterogeneity of a foot-and-mouth disease virus serotype in the field is mediated by very limited sequence variation at several antigenic sites. J Virol 68, 1407–1417.
    [Google Scholar]
  62. Mrukowicz, J. Z., Wetzel, J. D., Goral, M. I., Fogo, A. B., Wright, P. F. & Dermody, T. S. ( 1998; ). Viruses and cells with mutations affecting viral entry are selected during persistent rotavirus infections of MA104 cells. J Virol 72, 3088–3097.
    [Google Scholar]
  63. Nathanson, N. & Gonzalez-Scarano, F. ( 2007; ). Viral persistence. In Viral Pathogenesis and Immunity, pp. 130–145. Edited by N. Nathanson. San Diego: Academic Press.
  64. Novak, J. E. & Kirkegaard, K. ( 1991; ). Improved method for detecting poliovirus negative strands used to demonstrate specificity of positive-strand encapsidation and the ratio of positive to negative strands in infected cells. J Virol 65, 3384–3387.
    [Google Scholar]
  65. Orgel, L. E. ( 2004; ). Prebiotic chemistry and the origin of the RNA world. Crit Rev Biochem Mol Biol 39, 99–123.[CrossRef]
    [Google Scholar]
  66. Perales, C., Mateo, R., Mateu, M. G. & Domingo, E. ( 2007; ). Insights into RNA virus mutant spectrum and lethal mutagenesis events: replicative interference and complementation by multiple point mutants. J Mol Biol 369, 985–1000.[CrossRef]
    [Google Scholar]
  67. Quer, J., Huerta, R., Novella, I. S., Tsimring, L., Domingo, E. & Holland, J. J. ( 1996; ). Reproducible nonlinear population dynamics and critical points during replicative competitions of RNA virus quasispecies. J Mol Biol 264, 465–471.[CrossRef]
    [Google Scholar]
  68. Quer, J., Hershey, C. L., Domingo, E., Holland, J. J. & Novella, I. S. ( 2001; ). Contingent neutrality in competing viral populations. J Virol 75, 7315–7320.[CrossRef]
    [Google Scholar]
  69. Ron, D. & Tal, J. ( 1985; ). Coevolution of cells and virus as a mechanism for the persistence of lymphotropic minute virus of mice in L-cells. J Virol 55, 424–430.
    [Google Scholar]
  70. Ron, D. & Tal, J. ( 1986; ). Spontaneous curing of a minute virus of mice carrier state by selection of cells with an intracellular block of viral replication. J Virol 58, 26–30.
    [Google Scholar]
  71. Rowlands, D. J. ( 2003; ). Preface. Virus Res 91, (Foot-and-Mouth Disease Special Issue). 1 [CrossRef]
    [Google Scholar]
  72. Ruiz-Jarabo, C. M., Miller, E., Gómez-Mariano, G. & Domingo, E. ( 2003; ). Synchronous loss of quasispecies memory in parallel viral lineages: a deterministic feature of viral quasispecies. J Mol Biol 333, 553–563.[CrossRef]
    [Google Scholar]
  73. Sáiz, J. C. & Domingo, E. ( 1996; ). Virulence as a positive trait in viral persistence. J Virol 70, 6410–6413.
    [Google Scholar]
  74. Schuster, P. ( 1997; ). Genotypes with phenotypes: adventures in an RNA toy world. Biophys Chem 66, 75–110.[CrossRef]
    [Google Scholar]
  75. Schuster, P. & Stadler, P. F. ( 1999; ). Nature and evolution of early replicons. In Origin and Evolution of Viruses, pp. 1–24. Edited by E. Domingo, R. G. Webster & J. J. Holland. San Diego: Academic Press.
  76. Sevilla, N. & Domingo, E. ( 1996; ). Evolution of a persistent aphthovirus in cytolytic infections: partial reversion of phenotypic traits accompanied by genetic diversification. J Virol 70, 6617–6624.
    [Google Scholar]
  77. Sobrino, F. & Domingo, E. ( 2004; ). Foot-and-Mouth Disease: Current Perspectives. Wymondham, UK: Horizon Bioscience.
  78. Sobrino, F., Dávila, M., Ortín, J. & Domingo, E. ( 1983; ). Multiple genetic variants arise in the course of replication of foot-and-mouth disease virus in cell culture. Virology 128, 310–318.[CrossRef]
    [Google Scholar]
  79. Stoker, M. & MacPherson, I. ( 1964; ). Syrian hamster fibroblast cell line BHK21 and its derivatives. Nature 203, 1355–1357.[CrossRef]
    [Google Scholar]
  80. Takemoto, K. K. & Habel, K. ( 1959; ). Virus-cell relationship in a carrier culture of HeLa cells and Coxsackie A9 virus. Virology 7, 28–44.[CrossRef]
    [Google Scholar]
  81. Tam, P. E. & Messner, R. P. ( 1999; ). Molecular mechanisms of coxsackievirus persistence in chronic inflammatory myopathy: viral RNA persists through formation of a double-stranded complex without associated genomic mutations or evolution. J Virol 73, 10113–10121.
    [Google Scholar]
  82. Toja, M., Escarmis, C. & Domingo, E. ( 1999; ). Genomic nucleotide sequence of a foot-and-mouth disease virus clone and its persistent derivatives. Implications for the evolution of viral quasispecies during a persistent infection. Virus Res 64, 161–171.[CrossRef]
    [Google Scholar]
  83. van Nimwegen, E., Crutchfield, J. P. & Huynen, M. ( 1999; ). Neutral evolution of mutational robustness. Proc Natl Acad Sci U S A 96, 9716–9720.[CrossRef]
    [Google Scholar]
  84. Villarreal, L. P. ( 2005; ). Viruses and the Evolution of Life. Washington, DC: American Society for Microbiology.
  85. Wilke, C. O., Ronnewinkel, C. & Martinetz, T. ( 2001; ). Dynamic fitness landscapes in molecular evolution. Phys Rep 349, 395–446.[CrossRef]
    [Google Scholar]
  86. Woolhouse, M. E., Webster, J. P., Domingo, E., Charlesworth, B. & Levin, B. R. ( 2002; ). Biological and biomedical implications of the co-evolution of pathogens and their hosts. Nat Genet 32, 569–577.[CrossRef]
    [Google Scholar]
  87. Youngner, J. S. & Preble, O. ( 1980; ). Viral persistence: evolution of viral populations. In Virus-host Interactions: Viral Invasion, Persistence, and Disease (Comprehensive Virology, vol. 16), pp. 73–135. Edited by H. Fraenkel-Conrat & R. R. Wagner. London: Plenum Press.
  88. Zhong, J., Gastaminza, P., Chung, J., Stamataki, Z., Isogawa, M., Cheng, G., McKeating, J. A. & Chisari, F. V. ( 2006; ). Persistent hepatitis C virus infection in vitro: coevolution of virus and host. J Virol 80, 11082–11093.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83312-0
Loading
/content/journal/jgv/10.1099/vir.0.83312-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error