1887

Abstract

The attenuated West Nile virus 25A strain (WN25A) was investigated for its neuroinvasive properties in B-cell-deficient (μMT) mice. After peripheral inoculation, WN25A caused fatal encephalitis in the majority of 6–8-week-old mice, characterized by a systemic infection with viraemia, moderate virus burdens in peripheral tissues and a high titre of brain-associated virus. Mice generally succumbed to infection within a few weeks of infection. However, others survived for as long as 10 weeks, and some for even longer. Normal age-matched C57BL/6 mice showed no signs of illness after inoculation with WN25A virus. Nucleotide sequencing of WN25A viruses recovered from the brains of B-cell-deficient mice revealed that the conserved -linked glycosylation site in the viral envelope protein was abolished by substitution of a serine residue at position 155. This was found to be a pseudoreversion relative to the wild-type WN-Israel strain, based on virulence testing of one such brain-associated virus in both B-cell-deficient and normal C57BL/6 mice. This study provides further characterization of the mouse virulence properties of the attenuated WN25A virus in the context of B-cell deficiency. Replication in these mice does not involve rapid neuroadaptation or reversion of WN25A virus to a neuroinvasive phenotype. Molecular modelling studies suggest a difference in local structure of the E protein associated with either an asparagine or serine residue at position 155 compared with the tyrosine found in the virulent parental WN-Israel virus.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83297-0
2008-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/3/627.html?itemId=/content/journal/jgv/10.1099/vir.0.83297-0&mimeType=html&fmt=ahah

References

  1. Beasley D. W., Li L., Suderman M. T., Barrett A. D. 2001; West Nile virus strains differ in mouse neurovirulence and binding to mouse or human brain membrane receptor preparations. Ann N Y Acad Sci 951:332–335
    [Google Scholar]
  2. Beasley D. W., Li L., Suderman M. T., Barrett A. D. 2002; Mouse neuroinvasive phenotype of West Nile virus strains varies depending upon virus genotype. Virology 296:17–23 [CrossRef]
    [Google Scholar]
  3. Beasley D. W. C., Whiteman M. C., Zhang S., Huang C. Y.-H., Schneider B. S., Smith D. R., Gromowski G. D., Higgs S., Kinney R. M., Barrett A. D. T. 2005; Envelope protein glycosylation status influences mouse neuroinvasion phenotype of genetic lineage 1 West Nile virus strains. J Virol 79:8339–8347 [CrossRef]
    [Google Scholar]
  4. Ben-Nathan D., Lustig S., Feuerstein G. 1989; The influence of cold or isolation stress on neuroinvasiveness and virulence of an attenuated variant of West Nile virus. Arch Virol 109:1–10 [CrossRef]
    [Google Scholar]
  5. Ben-Nathan D., Huitinga I., Lustig S., van Rooijen N., Kobiler D. 1996; West Nile virus neuroinvasion and encephalitis induced by macrophage depletion in mice. Arch Virol 141:459–469 [CrossRef]
    [Google Scholar]
  6. Ben-Nathan D., Lustig S., Tam G., Robinzon S., Segal S., Rager-Zisman B. 2003; Prophylactic and therapeutic efficacy of human intravenous immunoglobulin in treating West Nile virus infection in mice. J Infect Dis 188:5–12 [CrossRef]
    [Google Scholar]
  7. Berthet F. X., Zeller H. G., Drouet M. T., Rauzier J., Digoutte J. P., Deubel V. 1997; Extensive nucleotide changes and deletions within the envelope glycoprotein gene of Euro-African West Nile viruses. J Gen Virol 78:2293–2297
    [Google Scholar]
  8. Bondre V. P., Jadi R. S., Mishra A. C., Yergolkar P. N., Arankalle V. A. 2007; West Nile virus isolates from India: evidence for a distinct genetic lineage. J Gen Virol 88:875–884 [CrossRef]
    [Google Scholar]
  9. Brandriss M. W., Schlesinger J. J., Walsh E. E., Briselli M. 1986; Lethal 17D yellow fever encephalitis in mice. I. Passive protection by monoclonal antibodies to the envelope proteins of 17D yellow fever and dengue 2 viruses. J Gen Virol 67:229–234 [CrossRef]
    [Google Scholar]
  10. Broom A. K., Wallace M. J., Mackenzie J. S., Smith D. W., Hall R. A. 2000; Immunisation with gamma globulin to Murray Valley encephalitis virus and with an inactivated Japanese encephalitis virus vaccine as prophylaxis against Australian encephalitis: evaluation in a mouse model. J Med Virol 61:259–265 [CrossRef]
    [Google Scholar]
  11. Burke S. D., Monath T. P. 2001; Flaviviruses. In Fields Virology vol. 1, 4th edn. pp 1043–125Edited by Fields B. N., Knipe D. M., Howley. Philadelphia: Lippincott–Raven;
    [Google Scholar]
  12. Burt F. J., Grobbelaar A. A., Leman P. A., Anthony F. S., Gibson G. V., Swanepoel R. 2002; Phylogenetic relationships of Southern African West Nile virus isolates. Emerg Infect Dis 8:820–826 [CrossRef]
    [Google Scholar]
  13. Chambers T. J., Halevy M., Nestorowicz A., Rice C. M., Lustig S. 1998; West Nile virus envelope proteins: nucleotide sequence analysis of strains differing in mouse neuroinvasiveness. J Gen Virol 79:2375–2380
    [Google Scholar]
  14. Davis C. T., Beasley D. W., Guzman H., Siirin M., Parsons R. E., Tesh R. B., Barrett A. D. 2004; Emergence of attenuated West Nile virus variants in Texas, 2003. Virology 330:342–350 [CrossRef]
    [Google Scholar]
  15. Diamond M. S., Shrestha B., Marri A., Mahan D., Engle M. 2003; B cells and antibody play critical roles in the immediate defense of disseminated infection by West Nile encephalitis virus. J Virol 77:2578–2586 [CrossRef]
    [Google Scholar]
  16. Goldblum N., Strek V. V., Padersky B. 1954; West Nile fever: the clinical features of the disease and isolation of West Nile from the blood of nine human cases. Am J Hyg 59:89–103
    [Google Scholar]
  17. Halevy M., Akov Y., Ben-Nathan B., Kobiler D., Lachmi B., Lustig S. 1994; Loss of active neuroinvasiveness in attenuated strains of West Nile virus: pathogenicity in immunocompetent and SCID mice. Arch Virol 137:355–370 [CrossRef]
    [Google Scholar]
  18. Katz Y., Lustig S., Ben-Shlomo I., Kobiler D., Ben-Nathan D. 2002; Inhalation anesthetic-induced neuroinvasion by an attenuated strain of West Nile virus in mice. J Med Virol 66:576–580 [CrossRef]
    [Google Scholar]
  19. Kimura-Kuroda J., Yasui K. 1988; Protection of mice against Japanese encephalitis virus by passive administration with monoclonal antibodies. J Immunol 141:3606–3610
    [Google Scholar]
  20. Kobiler D., Lustig S., Gozes Y., Ben-Nathan D., Akov Y. 1989; Sodium dodecylsulphate induces a breach in the blood–brain barrier and enables a West Nile virus variant to penetrate into mouse brain. Brain Res 496:314–316 [CrossRef]
    [Google Scholar]
  21. Lanciotti R. S., Roehrig J. T., Deubel V., Smith J., Parker M., Steele K., Crise B., Volpe K. E., Crabtree M. B. other authors 1999; Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States. Science 286:2333–2337 [CrossRef]
    [Google Scholar]
  22. Lee E., Hall R. A., Lobigs M. 2004; Common E protein determinants for attenuation of glycosaminoglycan-binding variants of Japanese encephalitis and West Nile viruses. J Virol 78:8271–8280 [CrossRef]
    [Google Scholar]
  23. Lustig S., Danenberg H. D., Kafri Y., Kobiler D., Ben-Nathan D. 1992; Viral neuroinvasion and encephalitis induced by lipopolysaccharide and its mediators. J Exp Med 176:707–712 [CrossRef]
    [Google Scholar]
  24. Lustig S., Olshevsky U., Ben-Nathan D., Lachmi B. E., Malkinson M., Kobiler D., Halevy M. 2000; A live attenuated West Nile virus strain as a potential veterinary vaccine. Viral Immunol 13:401–410 [CrossRef]
    [Google Scholar]
  25. Mathews J. H., Roehrig J. T. 1984; Elucidation of the topography and determination of the protective epitopes on the E glycoprotein of Saint Louis encephalitis virus by passive transfer with monoclonal antibodies. J Immunol 132:1533–1537
    [Google Scholar]
  26. Nybakken G. E., Nelson C. A., Chen B. R., Diamond M. S., Fremont D. H. 2006; Crystal structure of the West Nile virus envelope glycoprotein. J Virol 80:11467–11474 [CrossRef]
    [Google Scholar]
  27. Petersen L. R., Roehrig J. T. 2001; West Nile virus: a reemerging global pathogen. Emerg Infect Dis 7:611–614 [CrossRef]
    [Google Scholar]
  28. Phillpotts R. J., Stephenson J. R., Porterfield J. S. 1987; Passive immunization of mice with monoclonal antibodies raised against tick-borne encephalitis virus: brief report. Arch Virol 93:295–301 [CrossRef]
    [Google Scholar]
  29. Price W. H., O'Leary W. 1967; Geographic variation in the antigenic character of West Nile virus. Am J Epidemiol 85:84–86
    [Google Scholar]
  30. Rappole J. H., Derrickson S. R., Hubalek Z. 2000; Migratory birds and spread of West Nile virus in the western hemisphere. Emerg Infect Dis 6:319–328 [CrossRef]
    [Google Scholar]
  31. Roehrig J. T., Staudinger L. A., Hunt A. R., Mathews J. H., Blair C. D. 2001; Antibody prophylaxis and therapy for flavivirus encephalitis infections. Ann N Y Acad Sci 951:286–297
    [Google Scholar]
  32. Roehrig J. T., Layton M., Smith P., Campbell G. L., Nasci R., Lanciotti R. S. 2002; The emergence of West Nile virus in North America: ecology, epidemiology, and surveillance. Curr Top Microbiol Immunol 267:223–240
    [Google Scholar]
  33. Scherret J. H., Poidinger M., Mackenzie J. S., Broom A. K., Deubel V., Lipkin W. I., Briese T., Gould E. A., Hall R. A. 2001; The relationships between West Nile and Kunjin viruses. Emerg Infect Dis 7:697–705 [CrossRef]
    [Google Scholar]
  34. Scherret J. H., Mackenzie J. S., Hall R. A., Deubel V., Gould E. A. 2002; Phylogeny and molecular epidemiology of West Nile and Kunjin viruses. Curr Top Microbiol Immunol 267:373–390
    [Google Scholar]
  35. Schlesinger J. J., Brandriss M. W., Walsh E. E. 1985; Protection against 17D yellow fever encephalitis in mice by passive transfer of monoclonal antibodies to the nonstructural glycoprotein gp48 and by active immunization with gp48. J Immunol 135:2805–2809
    [Google Scholar]
  36. Shirato K., Miyoshi H., Goto A., Ako Y., Ueki T., Kariwa H., Takashima I. 2004; Viral envelope protein glycosylation is a molecular determinant of the neuroinvasiveness of the New York strain of West Nile virus. J Gen Virol 85:3637–3645 [CrossRef]
    [Google Scholar]
  37. Shrestha B., Diamond M. S. 2004; Role of CD8+ T cells in control of West Nile virus infection. J Virol 78:8312–8321 [CrossRef]
    [Google Scholar]
  38. Smithburn K. C., Hughes T. P., Burke A. W., Paul J. H. 1940; A neurotropic virus isolated from the blood of a native of Uganda. Am J Trop Med 20:471–492
    [Google Scholar]
  39. Wengler G., Castle E., Leidner U., Nowak T., Wengler G. 1985; Sequence analysis of the membrane protein V3 of the flavivirus West Nile virus and of its gene. Virology 147:264–267 [CrossRef]
    [Google Scholar]
  40. Yamshchikov V. F., Wengler G., Perelygin A. A., Brinton M. A., Compans R. W. 2001; An infectious clone of the West Nile flavivirus. Virology 281:294–304 [CrossRef]
    [Google Scholar]
  41. Yamshchikov G., Borisevich V., Seregin A., Chaporgina E., Mishina M., Mishin V., Kwok C. W., Yamshchikov V. 2004; An attenuated West Nile prototype virus is highly immunogenic and protects against the deadly NY99 strain: a candidate for live WN vaccine development. Virology 330:304–312 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83297-0
Loading
/content/journal/jgv/10.1099/vir.0.83297-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error