1887

Abstract

In the current study, it was shown that repressed virus genomes in quiescently infected MRC5 cells adopt a repressed histone-associated structure marked by the enrichment of deacetylated histones at a wide variety of herpes simplex virus type 1 (HSV-1) promoters. In addition, it was shown that genome de-repression, mediated by HSV-2 superinfection or delivery of ICP0 using a recombinant adenovirus vector, resulted in the enrichment of acetylated histones on HSV DNA. These data indicate that ICP0-mediated genome de-repression is intimately linked to enrichment of acetylated histones at virus promoters. The fold change in association of pan-acetylated histone H3 following Ad.TRE.ICP0-mediated de-repression consistently revealed promoter-specific variation, with the highest fold changes (>50-fold) being observed at the latency-associated transcript promoter and enhancer regions. Chromatin immunoprecipitation analyses using an antibody specific to the C terminus of histone H3 as a surrogate measure of nucleosome occupancy revealed little variability in the total loading of histone H3 at the various HSV promoters. This observation suggests that acetylation of histone H3 in response to ICP0 expression is not uniformly targeted across the HSV-1 genome during ICP0-mediated de-repression.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83272-0
2008-01-01
2020-01-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/1/68.html?itemId=/content/journal/jgv/10.1099/vir.0.83272-0&mimeType=html&fmt=ahah

References

  1. Ace, C. I., McKee, T. A., Ryan, J. M., Cameron, J. M. & Preston, C. M. ( 1989; ). Construction and characterization of a herpes simplex virus type 1 mutant unable to transinduce immediate-early gene expression. J Virol 63, 2260–2269.
    [Google Scholar]
  2. Amelio, A. L., Giordani, N. V., Kubat, N. J., O'Neil, J. E. & Bloom, D. C. ( 2006; ). Deacetylation of the herpes simplex virus type 1 latency-associated transcript (LAT) enhancer and a decrease in LAT abundance precede an increase in ICP0 transcriptional permissiveness at early times postexplant. J Virol 80, 2063–2068.[CrossRef]
    [Google Scholar]
  3. Arthur, J. L., Scarpini, C. G., Connor, V., Lachmann, R. H., Tolkovsky, A. M. & Efstathiou, S. ( 2001; ). Herpes simplex virus type 1 promoter activity during latency establishment, maintenance, and reactivation in primary dorsal root neurons in vitro. J Virol 75, 3885–3895.[CrossRef]
    [Google Scholar]
  4. Bannister, A. J., Zegerman, P., Partridge, J. F., Miska, E. A., Thomas, J. O., Allshire, R. C. & Kouzarides, T. ( 2001; ). Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410, 120–124.[CrossRef]
    [Google Scholar]
  5. Bottardi, S., Aumont, A., Grosveld, F. & Milot, E. ( 2003; ). Developmental stage-specific epigenetic control of human β-globin gene expression is potentiated in hematopoietic progenitor cells prior to their transcriptional activation. Blood 102, 3989–3997.[CrossRef]
    [Google Scholar]
  6. Deshmane, S. L. & Fraser, N. W. ( 1989; ). During latency, herpes simplex virus type 1 DNA is associated with nucleosomes in a chromatin structure. J Virol 63, 943–947.
    [Google Scholar]
  7. Efstathiou, S. & Preston, C. M. ( 2005; ). Towards an understanding of the molecular basis of herpes simplex virus latency. Virus Res 111, 108–119.[CrossRef]
    [Google Scholar]
  8. Everett, R. D. ( 2000; ). ICP0, a regulator of herpes simplex virus during lytic and latent infection. Bioessays 22, 761–770.[CrossRef]
    [Google Scholar]
  9. Gu, H., Liang, Y., Mandel, G. & Roizman, B. ( 2005; ). Components of the REST/CoREST/histone deacetylase repressor complex are disrupted, modified, and translocated in HSV-1-infected cells. Proc Natl Acad Sci U S A 102, 7571–7576.[CrossRef]
    [Google Scholar]
  10. Hagglund, R. & Roizman, B. ( 2004; ). Role of ICP0 in the strategy of conquest of the host cell by herpes simplex virus 1. J Virol 78, 2169–2178.[CrossRef]
    [Google Scholar]
  11. Halford, W. P. & Schaffer, P. A. ( 2001; ). ICP0 is required for efficient reactivation of herpes simplex virus type 1 from neuronal latency. J Virol 75, 3240–3249.[CrossRef]
    [Google Scholar]
  12. Harris, R. A. & Preston, C. M. ( 1991; ). Establishment of latency in vitro by the herpes simplex virus type 1 mutant in1814. J Gen Virol 72, 907–913.[CrossRef]
    [Google Scholar]
  13. Harris, R. A., Everett, R. D., Zhu, X. X., Silverstein, S. & Preston, C. M. ( 1989; ). Herpes simplex virus type 1 immediate-early protein Vmw110 reactivates latent herpes simplex virus type 2 in an in vitro latency system. J Virol 63, 3513–3515.
    [Google Scholar]
  14. Herrera, F. J. & Triezenberg, S. J. ( 2004; ). VP16-dependent association of chromatin-modifying coactivators and underrepresentation of histones at immediate-early gene promoters during herpes simplex virus infection. J Virol 78, 9689–9696.[CrossRef]
    [Google Scholar]
  15. Hobbs, W. E., Brough, D. E., Kovesdi, I. & DeLuca, N. A. ( 2001; ). Efficient activation of viral genomes by levels of herpes simplex virus ICP0 insufficient to affect cellular gene expression or cell survival. J Virol 75, 3391–3403.[CrossRef]
    [Google Scholar]
  16. Homer, E. G., Rinaldi, A., Nicholl, M. J. & Preston, C. M. ( 1999; ). Activation of herpesvirus gene expression by the human cytomegalovirus protein pp71. J Virol 73, 8512–8518.
    [Google Scholar]
  17. Jamieson, D. R., Robinson, L. H., Daksis, J. I., Nicholl, M. J. & Preston, C. M. ( 1995; ). Quiescent viral genomes in human fibroblasts after infection with herpes simplex virus type 1 Vmw65 mutants. J Gen Virol 76, 1417–1431.[CrossRef]
    [Google Scholar]
  18. Jenuwein, T. & Allis, C. D. ( 2001; ). Translating the histone code. Science 293, 1074–1080.[CrossRef]
    [Google Scholar]
  19. Kent, J. R., Zeng, P. Y., Atanasiu, D., Gardner, J., Fraser, N. W. & Berger, S. L. ( 2004; ). During lytic infection herpes simplex virus type 1 is associated with histones bearing modifications that correlate with active transcription. J Virol 78, 10178–10186.[CrossRef]
    [Google Scholar]
  20. Kouzarides, T. ( 2002; ). Histone methylation in transcriptional control. Curr Opin Genet Dev 12, 198–209.[CrossRef]
    [Google Scholar]
  21. Kubat, N. J., Tran, R. K., McAnany, P. & Bloom, D. C. ( 2004a; ). Specific histone tail modification and not DNA methylation is a determinant of herpes simplex virus type 1 latent gene expression. J Virol 78, 1139–1149.[CrossRef]
    [Google Scholar]
  22. Kubat, N. J., Amelio, A. L., Giordani, N. V. & Bloom, D. C. ( 2004b; ). The herpes simplex virus type 1 latency-associated transcript (LAT) enhancer/rcr is hyperacetylated during latency independently of LAT transcription. J Virol 78, 12508–12518.[CrossRef]
    [Google Scholar]
  23. Leib, D. A., Coen, D. M., Bogard, C. L., Hicks, K. A., Yager, D. R., Knipe, D. M., Tyler, K. L. & Schaffer, P. A. ( 1989; ). Immediate-early regulatory gene mutants define different stages in the establishment and reactivation of herpes simplex virus latency. J Virol 63, 759–768.
    [Google Scholar]
  24. Lomonte, P., Thomas, J., Texier, P., Caron, C., Khochbin, S. & Epstein, A. L. ( 2004; ). Functional interaction between class II histone deacetylases and ICP0 of herpes simplex virus type 1. J Virol 78, 6744–6757.[CrossRef]
    [Google Scholar]
  25. McFarlane, M., Daksis, J. I. & Preston, C. M. ( 1992; ). Hexamethylene bisacetamide stimulates herpes simplex virus immediate early gene expression in the absence of trans-induction by Vmw65. J Gen Virol 73, 285–292.[CrossRef]
    [Google Scholar]
  26. Minaker, R. L., Mossman, K. L. & Smiley, J. R. ( 2005; ). Functional inaccessibility of quiescent herpes simplex virus genomes. Virol J 2, 85 [CrossRef]
    [Google Scholar]
  27. Murphy, J. C., Fischle, W., Verdin, E. & Sinclair, J. H. ( 2002; ). Control of cytomegalovirus lytic gene expression by histone acetylation. EMBO J 21, 1112–1120.[CrossRef]
    [Google Scholar]
  28. Nitsche, A., Becker, M., Junghahn, I., Aumann, J., Landt, O., Fichtner, I., Wittig, B. & Siegert, W. ( 2001; ). Quantification of human cells in NOD/SCID mice by duplex real-time polymerase-chain reaction. Haematologica 86, 693–699.
    [Google Scholar]
  29. Pokholok, D. K., Harbison, C. T., Levine, S., Cole, M., Hannett, N. M., Lee, T. I., Bell, G. W., Walker, K., Rolfe, P. A. & other authors ( 2005; ). Genome-wide map of nucleosome acetylation and methylation in yeast. Cell 122, 517–527.[CrossRef]
    [Google Scholar]
  30. Preston, C. M. ( 2000; ). Repression of viral transcription during herpes simplex virus latency. J Gen Virol 81, 1–19.
    [Google Scholar]
  31. Preston, C. M. & Nicholl, M. J. ( 1997; ). Repression of gene expression upon infection of cells with herpes simplex virus type 1 mutants impaired for immediate-early protein synthesis. J Virol 71, 7807–7813.
    [Google Scholar]
  32. Reeves, M. B., MacAry, P. A., Lehner, P. J., Sissons, J. G. & Sinclair, J. H. ( 2005; ). Latency, chromatin remodeling, and reactivation of human cytomegalovirus in the dendritic cells of healthy carriers. Proc Natl Acad Sci U S A 102, 4140–4145.[CrossRef]
    [Google Scholar]
  33. Reeves, M., Murphy, J., Greaves, R., Fairley, J., Brehm, A. & Sinclair, J. H. ( 2006; ). Autorepression of the human cytomegalovirus major immediate-early promoter/enhancer at late times of infection is mediated by the recruitment of chromatin remodeling enzymes by IE86. J Virol 80, 9998–10009.[CrossRef]
    [Google Scholar]
  34. Samaniego, L. A., Neiderhiser, L. & DeLuca, N. A. ( 1998; ). Persistence and expression of the herpes simplex virus genome in the absence of immediate-early proteins. J Virol 72, 3307–3320.
    [Google Scholar]
  35. Stow, N. D. & Stow, E. C. ( 1986; ). Isolation and characterization of a herpes simplex virus type 1 mutant containing a deletion within the gene encoding the immediate early polypeptide Vmw110. J Gen Virol 67, 2571–2585.[CrossRef]
    [Google Scholar]
  36. Suzuki, M., Kasai, K. & Saeki, Y. ( 2006; ). Plasmid DNA sequences present in conventional herpes simplex virus amplicon vectors cause rapid transgene silencing by forming inactive chromatin. J Virol 80, 3293–3300.[CrossRef]
    [Google Scholar]
  37. Thompson, R. L. & Sawtell, N. M. ( 2006; ). Evidence that the herpes simplex virus type 1 ICP0 protein does not initiate reactivation from latency in vivo. J Virol 80, 10919–10930.[CrossRef]
    [Google Scholar]
  38. Wang, Q. Y., Zhou, C., Johnson, K. E., Colgrove, R. C., Coen, D. M. & Knipe, D. M. ( 2005; ). Herpesviral latency-associated transcript gene promotes assembly of heterochromatin on viral lytic-gene promoters in latent infection. Proc Natl Acad Sci U S A 102, 16055–16059.[CrossRef]
    [Google Scholar]
  39. Zhu, X. X., Chen, J. X., Young, C. S. & Silverstein, S. ( 1990; ). Reactivation of latent herpes simplex virus by adenovirus recombinants encoding mutant IE-0 gene products. J Virol 64, 4489–4498.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83272-0
Loading
/content/journal/jgv/10.1099/vir.0.83272-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error