1887

Abstract

During infection, the capsid (C) protein of many flaviviruses localizes to the nuclei and nucleoli of several infected cell lines; the underlying basis and significance of C protein nuclear localization remain poorly understood. In this study, double alanine-substitution mutations were introduced into three previously proposed nuclear-localization signals (at positions 6–9, 73–76 and 85–100) of dengue virus C protein, and four viable mutants, c(K6A,K7A), c(K73A,K74A), c(R85A,K86A) and c(R97A,R98A), were generated in a mosquito cell line in which C protein nuclear localization was rarely observed. Indirect immunofluorescence analysis revealed that, whilst C protein was present in the nuclei of PS and Vero cells throughout infection with a dengue serotype 2 parent virus, the substitution mutations in c(K73A,K74A) and c(R85A,K86A) resulted in an elimination of nuclear localization in PS cells and marked reduction in Vero cells. Mutants c(K6A,K7A) and c(R97A,R98A) exhibited reduced nuclear localization at the late period of infection in PS cells only. All four mutants displayed reduced replication in PS, Vero and C6/36 cells, but there was a lack of correlation between nuclear localization and viral growth properties. Distinct dibasic residues within dengue virus C protein, many of which were located on the solvent-exposed side of the C protein homodimer, contribute to its ability to localize to nuclei during virus infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83264-0
2008-05-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/5/1254.html?itemId=/content/journal/jgv/10.1099/vir.0.83264-0&mimeType=html&fmt=ahah

References

  1. Amberg, S. M. & Rice, C. M. ( 1999; ). Mutagenesis of the NS2B-NS3-mediated cleavage site in the flavivirus capsid protein demonstrates a requirement for coordinated processing. J Virol 73, 8083–8094.
    [Google Scholar]
  2. Amberg, S. M., Nestorowicz, D., McCourt, D. W. & Rice, C. M. ( 1994; ). NS2B-3 proteinase-mediated processing in the yellow fever virus structural region: in vitro and in vivo studies. J Virol 68, 3794–3802.
    [Google Scholar]
  3. Andersen, J. S., Lam, Y. W., Leung, A. K., Ong, S. E., Lyon, C. E., Lamond, A. I. & Mann, M. ( 2005; ). Nucleolar proteome dynamics. Nature 433, 77–83.[CrossRef]
    [Google Scholar]
  4. Avirutnan, P., Malasit, P., Selinger, B., Bhakdi, S. & Husmann, M. ( 1998; ). Dengue virus infection of human endothelial cells leads to chemokine production, complement activation, and apoptosis. J Immunol 161, 6338–6346.
    [Google Scholar]
  5. Boisvert, F. M., Van Koningsbruggen, S., Navascués, J. & Lamond, A. L. ( 2007; ). The multifunctional nucleolus. Nat Rev Mol Cell Biol 8, 574–585.
    [Google Scholar]
  6. Brooks, A. J., Johansson, M., John, A. V., Xu, Y., Jans, D. A. & Vasudevan, S. G. ( 2002; ). The interdomain region of dengue NS5 protein that binds to the viral helicase NS3 contains independently functional importin beta 1 and importin alpha/beta-recognized nuclear localization signals. J Biol Chem 277, 36399–36407.[CrossRef]
    [Google Scholar]
  7. Bui, M., Myers, J. E. & Whittaker, G. R. ( 2002; ). Nucleo-cytoplasmic localization of influenza virus nucleoprotein depends on cell density and phosphorylation. Virus Res 84, 37–44.[CrossRef]
    [Google Scholar]
  8. Bulich, R. & Aaskov, J. G. ( 1992; ). Nuclear localization of dengue 2 virus core protein detected with monoclonal antibodies. J Gen Virol 73, 2999–3003.[CrossRef]
    [Google Scholar]
  9. de Madrid, A. T. & Porterfield, J. S. ( 1969; ). A simple micro-culture method for the study of group B arboviruses. Bull World Health Organ 40, 113–121.
    [Google Scholar]
  10. Dingwall, C. & Laskey, R. A. ( 1991; ). Nuclear targeting sequences: a consensus? Trends Biochem Sci 16, 478–481.[CrossRef]
    [Google Scholar]
  11. Görlich, D. & Kutay, U. ( 1999; ). Transport between the cell nucleus and the cytoplasm. Annu Rev Cell Dev Biol 15, 607–660.[CrossRef]
    [Google Scholar]
  12. Grieger, J. C., Snowdy, S. & Samulski, R. J. ( 2006; ). Separate basic region motifs within the adeno-associated virus capsid proteins are essential for infectivity and assembly. J Virol 80, 5199–5210.[CrossRef]
    [Google Scholar]
  13. Helt, A. M. & Harris, E. ( 2005; ). S-phase-dependent enhancement of dengue virus replication in mosquito cells, but not in human cells. J Virol 79, 13218–13230.[CrossRef]
    [Google Scholar]
  14. Henchal, E. A., Gentry, M. K., McCown, J. M. & Brandt, W. E. ( 1982; ). Dengue virus-specific and flavivirus group determinants identified with monoclonal antibodies by indirect immunofluorescence. Am J Trop Med Hyg 31, 830–836.
    [Google Scholar]
  15. Hiscox, J. A. ( 2007; ). RNA viruses: hijacking the dynamic nucleolus. Nat Rev Microbiol 5, 119–127.[CrossRef]
    [Google Scholar]
  16. Hogarth, C. A., Calanni, S., Jans, D. & Loveland, K. ( 2006; ). Importin α mRNAs have distinct expression profiles during spermatogenesis. Dev Dyn 235, 253–262.[CrossRef]
    [Google Scholar]
  17. Igarashi, A. ( 1978; ). Isolation of Singh's Aedes albopictus cell clone sensitive to dengue and chikungunya viruses. J Gen Virol 40, 531–544.[CrossRef]
    [Google Scholar]
  18. Jans, D. A., Xiao, C. Y. & Lam, M. H. ( 2000; ). Nuclear targeting signal recognition: a key control point in nuclear transport? Bioessays 22, 532–544.[CrossRef]
    [Google Scholar]
  19. Keelapang, P., Sriburi, R., Supasa, S., Punyadee, N., Songjaeng, A., Jairungsri, A., Puttikhunt, C., Kasinrerk, W., Malasit, P. & Sittisombut, N. ( 2004; ). Alterations of pr-M cleavage and virus export in pr-M junction chimeric dengue viruses. J Virol 78, 2367–2381.[CrossRef]
    [Google Scholar]
  20. Khromykh, A. A. & Westaway, E. G. ( 1996; ). RNA binding properties of core protein of the flavivirus Kunjin. Arch Virol 141, 685–699.[CrossRef]
    [Google Scholar]
  21. Kohler, M., Speck, C., Christiansen, M., Bischoff, F. R., Prehn, S., Haller, H., Gorlich, D. & Hartmann, E. ( 1999; ). Evidence for distinct substrate specificities of importin α family members in nuclear protein import. Mol Cell Biol 19, 7782–7791.
    [Google Scholar]
  22. Lee, C., Hodgins, D., Calvert, J. G., Welch, S. W., Jolie, R. & Yoo, D. ( 2006; ). Mutations within the nuclear localization signal of the porcine reproductive and respiratory syndrome virus nucleocapsid protein attenuate virus replication. Virology 346, 238–250.[CrossRef]
    [Google Scholar]
  23. Li, J., Lim, S. P., Beer, D., Patel, V., Wen, D., Tumanut, C., Tully, D., Williams, J. A., Jiricek, J. & other authors ( 2005; ). Functional profiling of recombinant NS3 proteases from all four serotypes of dengue virus using tetrapeptide and octapeptide substrate libraries. J Biol Chem 280, 28766–28774.[CrossRef]
    [Google Scholar]
  24. Lindenbach, B. D. & Rice, C. M. ( 2001; ). Flaviviridae: the viruses and their replication. In Fields Virology, 4th edn, vol. 1, pp. 991–1041. Edited by D. M. Knipe, P. M. Howley, D. E. Griffin, R. A. Lamb, M. A. Martin, B. Roizman & S. E. Straus. Philadelphia, PA: Lippincott Williams & Wilkins.
  25. Llorian, M., Beullens, M., Lesage, B., Nicolaescu, E., Beke, L., Landuyt, W., Ortiz, J. M. & Bollen, M. ( 2005; ). Nucleocytoplasmic shuttling of the splicing factor SIPP1. J Biol Chem 280, 38862–38869.[CrossRef]
    [Google Scholar]
  26. Lobigs, M. ( 1993; ). Flavivirus premembrane protein cleavage and spike heterodimer secretion require the function of the viral proteinase NS3. Proc Natl Acad Sci U S A 90, 6218–6222.[CrossRef]
    [Google Scholar]
  27. Ma, L., Jones, C. T., Groesch, T. D., Kuhn, R. J. & Post, C. B. ( 2004; ). Solution structure of dengue virus capsid protein reveals another fold. Proc Natl Acad Sci U S A 101, 3414–3419.[CrossRef]
    [Google Scholar]
  28. Marg, A., Shan, Y., Meyer, T., Meissner, T., Brandenburg, M. & Vinkemeier, U. ( 2004; ). Nucleocytoplasmic shuttling by nucleoporins Nup153 and Nup214 and CRM1-dependent nuclear export control the subcellular distribution of latent Stat1. J Cell Biol 165, 823–833.[CrossRef]
    [Google Scholar]
  29. Marianneau, P., Cardona, A., Edelman, L., Deubel, V. & Desprès, P. ( 1997; ). Dengue virus replication in human cells activates NF-κB which in turn induces apoptotic cell death. J Virol 71, 3244–3249.
    [Google Scholar]
  30. Markoff, L., Falgout, B. & Chang, A. ( 1997; ). A conserved internal hydrophobic domain mediates the stable membrane integration of the dengue virus capsid protein. Virology 233, 105–117.[CrossRef]
    [Google Scholar]
  31. Melén, K., Kinnunen, L., Fagerlund, R., Ikonen, N., Twu, K. Y., Krug, R. M. & Julkunen, I. ( 2007; ). Nuclear and nucleolar targeting of influenza A virus NS1 protein: striking differences between different virus subtypes. J Virol 81, 5995–6006.[CrossRef]
    [Google Scholar]
  32. Mizrachy, L., Dabush, D., Levy, Y., Aloni, R., Altman, A. & Gafni, Y. ( 2004; ). Cloning and characterization of the tomato karyopherin α 1 gene promoter. Dev Growth Differ 46, 515–522.[CrossRef]
    [Google Scholar]
  33. Mizuno, T., Okamoto, T., Yokoi, M., Izumi, M., Kobayashi, A., Hachiya, T., Tamai, K., Inoue, T. & Hanaoka, F. ( 1996; ). Identification of the nuclear localization signal of mouse DNA primase: nuclear transport of p46 subunit is facilitated by interaction with p54 subunit. J Cell Sci 109, 2627–2636.
    [Google Scholar]
  34. Mori, Y., Okabayashi, T., Yamashita, T., Zhao, Z., Wakita, T., Yasui, K., Hasebe, F., Tadano, M., Konishi, E. & Matsuura, Y. ( 2005; ). Nuclear localization of Japanese encephalitis virus core protein enhances viral replication. J Virol 79, 3448–3458.[CrossRef]
    [Google Scholar]
  35. Nachury, M. V., Ryder, U. W., Lamond, A. I. & Weis, K. ( 1998; ). Cloning and characterization of two hSPP1γ, a tissue-specific nuclear transport factor. Proc Natl Acad Sci U S A 95, 582–587.[CrossRef]
    [Google Scholar]
  36. Ng, M. L., Tan, S. H. & Chu, J. J. ( 2001; ). Transport and budding at two distinct sites of visible nucleocapsids of West Nile (Sarafend) virus. J Med Virol 65, 758–764.[CrossRef]
    [Google Scholar]
  37. Niyomrattanakit, P., Yahorava, S., Mutule, I., Mutulis, F., Petrovska, R., Prusis, P., Katzenmeier, G. & Wikberg, J. E. ( 2006; ). Probing the substrate specificity of the dengue virus type 2 NS3 serine protease by using internally quenched fluorescent peptides. Biochem J 397, 203–211.[CrossRef]
    [Google Scholar]
  38. Oh, W., Yang, M. R., Lee, E. W., Park, K. M., Pyo, S., Yang, J. S., Lee, H. W. & Song, J. ( 2006; ). Jab1 mediates cytoplasmic localization and degradation of West Nile virus capsid protein. J Biol Chem 281, 30166–30174.[CrossRef]
    [Google Scholar]
  39. Pemberton, L. F. & Paschal, B. M. ( 2005; ). Mechanisms of receptor-mediated nuclear import and nuclear export. Traffic 6, 187–198.[CrossRef]
    [Google Scholar]
  40. Puttikhunt, C., Kasinrerk, W., Srisa-ad, S., Duangchinda, T., Silakate, W., Moonsom, S., Sittisombut, N. & Malasit, P. ( 2003; ). Production of anti-dengue NS1 monoclonal antibodies by DNA immunization. J Virol Methods 109, 55–61.[CrossRef]
    [Google Scholar]
  41. Reed, M. L., Dove, B. K., Jackson, R. M., Collins, R., Brooks, G. & Hiscox, J. A. ( 2006; ). Delineation and modeling of a nucleolar retention signal in the coronavirus nucleocapsid protein. Traffic 7, 833–848.[CrossRef]
    [Google Scholar]
  42. Sriburi, R., Keelapang, P., Duangchinda, T., Pruksakorn, S., Maneekarn, N., Malasit, P. & Sittisombut, N. ( 2001; ). Construction of infectious dengue 2 virus cDNA clones using high copy number plasmid. J Virol Methods 92, 71–82.[CrossRef]
    [Google Scholar]
  43. Tadano, M., Makino, Y., Fukunaga, T., Okuno, Y. & Fukai, K. ( 1989; ). Detection of dengue 4 virus core protein in the nucleus. I. A monoclonal antibody to dengue 4 virus reacts with the antigen in the nucleus and cytoplasm. J Gen Virol 70, 1409–1415.[CrossRef]
    [Google Scholar]
  44. Tao, T., Lan, J., Presley, J. F., Sweezey, N. B. & Kaplan, F. ( 2004; ). Nucleocytoplasmic shuttling of Igl2 is developmentally regulated in fetal lung. Am J Respir Cell Mol Biol 30, 350–359.[CrossRef]
    [Google Scholar]
  45. Uchil, P. D., Kumar, A. V. & Satchidanandam, V. ( 2006; ). Nuclear localization of flavivirus RNA synthesis in infected cells. J Virol 80, 5451–5464.[CrossRef]
    [Google Scholar]
  46. Wang, Y., Geer, L. Y., Chappey, C., Kans, J. A. & Bryant, S. H. ( 2000; ). Cn3D: sequence and structure views for Entrez. Trends Biochem Sci 25, 300–302.[CrossRef]
    [Google Scholar]
  47. Wang, S. H., Syu, W. J., Huang, K. J., Lei, H. Y., Yao, C. W., King, C. C. & Hu, S. T. ( 2002; ). Intracellular localization and determination of a nuclear localization signal of the core protein of dengue virus. J Gen Virol 83, 3093–3102.
    [Google Scholar]
  48. Wang, S. H., Syu, W. J. & Hu, S. T. ( 2004; ). Identification of the homotypic interaction domain of the core protein of dengue virus type 2. J Gen Virol 85, 2307–2314.[CrossRef]
    [Google Scholar]
  49. Westaway, E. G. ( 1966; ). Assessment and application of a cell line from pig kidney for plaque assay and neutralization tests with twelve group B aboviruses. Am J Epidemiol 84, 439–456.
    [Google Scholar]
  50. Westaway, E. G., Khromykh, A. A., Kenney, M. T., Mackenzie, J. M. & Jones, M. K. ( 1997; ). Proteins C and NS4B of the flavivirus Kunjin translocate independently into the nucleus. Virology 234, 31–41.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83264-0
Loading
/content/journal/jgv/10.1099/vir.0.83264-0
Loading

Data & Media loading...

Supplements

vol. , part 5, pp. 1254 – 1264

Oligonucleotides used for site-directed mutagenesis [ PDF] (51 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error