1887

Abstract

During the last few decades, many virus species have emerged, often forming dynamic complexes within which viruses share common hosts and rampantly exchange genetic material through recombination. Begomovirus species complexes are common and represent serious agricultural threats. Characterization of species complex diversity has substantially contributed to our understanding of both begomovirus evolution, and the ecological and epidemiological processes involved in the emergence of new viral pathogens. To date, the only extensively studied emergent African begomovirus species complex is that responsible for cassava mosaic disease. Here we present a study of another emerging begomovirus species complex which is associated with serious disease outbreaks in bean, tobacco and tomato on the south-west Indian Ocean (SWIO) islands off the coast of Africa. On the basis of 14 new complete DNA-A sequences, we describe seven new island monopartite begomovirus species, suggesting the presence of an extraordinary diversity of begomovirus in the SWIO islands. Phylogenetic analyses of these sequences reveal a close relationship between monopartite and bipartite African begomoviruses, supporting the hypothesis that either bipartite African begomoviruses have captured B components from other bipartite viruses, or there have been multiple B-component losses amongst SWIO virus progenitors. Moreover, we present evidence that detectable recombination events amongst African, Mediterranean and SWIO begomoviruses, while substantially contributing to their diversity, have not occurred randomly throughout their genomes. We provide the first statistical support for three recombination hot-spots (V1/C3 interface, C1 centre and the entire IR) and two recombination cold-spots (the V2 and the third quarter of V1) in the genomes of begomoviruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83252-0
2007-12-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/12/3458.html?itemId=/content/journal/jgv/10.1099/vir.0.83252-0&mimeType=html&fmt=ahah

References

  1. Bos, L. ( 1977; ). Persistence of infectivity of three viruses in plant material dried over CaCl2 and stored under different conditions. Eur J Plant Pathol 83, 217–220.
    [Google Scholar]
  2. Briddon, R. W., Bull, S. E., Mansoor, S., Amin, I. & Markham, P. G. ( 2002; ). Universal primers for the PCR-mediated amplification of DNA beta: a molecule associated with some monopartite begomoviruses. Mol Biotechnol 20, 315–318.[CrossRef]
    [Google Scholar]
  3. Delatte, H., Holota, H., Naze, F., Peterschmitt, M., Reynaud, B. & Lett, J. M. ( 2005a; ). The presence of both recombinant and nonrecombinant strains of Tomato yellow leaf curl virus on tomato in Reunion Island. Plant Pathol 54, 262 [CrossRef]
    [Google Scholar]
  4. Delatte, H., Martin, D. P., Naze, F., Golbach, R. W., Reynaud, B., Peterschmitt, M. & Lett, J. M. ( 2005b; ). South West Indian Ocean islands tomato begomovirus populations represent a new major monopartite begomovirus group. J Gen Virol 86, 1533–1542.[CrossRef]
    [Google Scholar]
  5. Escriu, F., Fraile, A. & Garcia-Arenal, F. ( 2007; ). Constraints to genetic exchange support gene coadaptation in a tripartite RNA virus. PLoS Pathog 3, e8 [CrossRef]
    [Google Scholar]
  6. Fauquet, C. M., Bisaro, D. M., Briddon, R. W., Brown, J. K., Harrison, B. D., Rybicki, E. P., Stenger, D. C. & Stanley, J. ( 2003; ). Revision of taxonomic criteria for species demarcation in the family Geminiviridae, and an updated list of begomovirus species. Arch Virol 148, 405–421.[CrossRef]
    [Google Scholar]
  7. Fauquet, C. M., Sawyer, S., Idris, A. M. & Brown, J. K. ( 2005; ). Sequence analysis and classification of apparent recombinant begomoviruses infecting tomato in the Nile and Mediterranean Basins. Phytopathology 95, 549–555.[CrossRef]
    [Google Scholar]
  8. Fauquet, C. M., Briddon, R. W., Brown, J. K., Moriones, E., Stanley, J., Zerbini, M. & Zhou, X. ( 2007; ). Geminivirus strain demarcation and nomenclature. Arch Virol in press
    [Google Scholar]
  9. Garcia-Andres, S., Monci, F., Navas-Castillo, J. & Moriones, E. ( 2006; ). Begomovirus genetic diversity in the native plant reservoir Solanum nigrum: evidence for the presence of a new virus species of recombinant nature. Virology 350, 433–442.[CrossRef]
    [Google Scholar]
  10. Garcia-Andres, S., Tomas, D. M., Sanchez-Campos, S., Navas-Castillo, J. & Moriones, E. ( 2007; ). Frequent occurrence of recombinants in mixed infections of tomato yellow leaf curl disease-associated begomoviruses. Virology 359, 302–312.[CrossRef]
    [Google Scholar]
  11. Gibbs, M. J., Armstrong, J. S. & Gibbs, A. J. ( 2000; ). Sister-Scanning: a Monte Carlo procedure for assessing signals in recombinant sequences. Bioinformatics 16, 573–582.[CrossRef]
    [Google Scholar]
  12. Heath, L., van der Walt, E., Varsani, A. & Martin, D. P. ( 2006; ). Recombination patterns in aphthoviruses mirror those found in other picornaviruses. J Virol 80, 11827–11832.[CrossRef]
    [Google Scholar]
  13. Inoue-Nagata, A. K., Albuquerque, L. C., Rocha, W. B. & Nagata, T. ( 2004; ). A simple method for cloning the complete begomovirus genome using the bacteriophage φ29 DNA polymerase. J Virol Methods 116, 209–211.[CrossRef]
    [Google Scholar]
  14. Jain, R., Rivera, M. C. & Lake, J. A. ( 1999; ). Horizontal gene transfer among genomes: the complexity hypothesis. Proc Natl Acad Sci U S A 96, 3801–3806.[CrossRef]
    [Google Scholar]
  15. Jeske, H., Lutgemeier, M. & Preiss, W. ( 2001; ). DNA forms indicate rolling circle and recombination-dependent replication of Abutilon mosaic virus. EMBO J 20, 6158–6167.[CrossRef]
    [Google Scholar]
  16. Kumar, S., Tamura, K. & Nei, M. ( 2004; ). mega3: integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef]
    [Google Scholar]
  17. Laufs, J., Traut, W., Heyraud, F., Matzeit, V., Rogers, S. G., Schell, J. & Gronenborn, B. ( 1995; ). In vitro cleavage and joining at the viral origin of replication by the replication initiator protein of tomato yellow leaf curl virus. Proc Natl Acad Sci U S A 92, 3879–3883.[CrossRef]
    [Google Scholar]
  18. Lee, C., Grasso, C. & Sharlow, M. F. ( 2002; ). Multiple sequence alignment using partial order graphs. Bioinformatics 18, 452–464.[CrossRef]
    [Google Scholar]
  19. Lefeuvre, P., Delatte, H., Naze, F., Dogley, W., Reynaud, B. & Lett, J. M. ( 2007; ). A new tomato leaf curl virus from the Seychelles archipelago. Plant Pathol 56, 342
    [Google Scholar]
  20. Liu, H., Lucy, A. P., Davies, J. W. & Boulton, M. I. ( 2001; ). A single amino acid change in the coat protein of Maize streak virus abolishes systemic infection, but not interaction with viral DNA or movement protein. Mol Plant Pathol 2, 223–228.[CrossRef]
    [Google Scholar]
  21. Mansoor, S., Briddon, R. W., Zafar, Y. & Stanley, J. ( 2003; ). Geminivirus disease complexes: an emerging threat. Trends Plant Sci 8, 128–134.[CrossRef]
    [Google Scholar]
  22. Martin, D. & Rybicki, E. ( 2000; ). RDP: detection of recombination amongst aligned sequences. Bioinformatics 16, 562–563.[CrossRef]
    [Google Scholar]
  23. Martin, D. P. & Rybicki, E. P. ( 2002; ). Investigation of Maize streak virus pathogenicity determinants using chimaeric genomes. Virology 300, 180–188.[CrossRef]
    [Google Scholar]
  24. Martin, D. P., Posada, D., Crandall, K. A. & Williamson, C. ( 2005a; ). A modified bootscan algorithm for automated identification of recombinant sequences and recombination breakpoints. AIDS Res Hum Retroviruses 21, 98–102.[CrossRef]
    [Google Scholar]
  25. Martin, D. P., Williamson, C. & Posada, D. ( 2005b; ). RDP2: recombination detection and analysis from sequence alignments. Bioinformatics 21, 260–262.[CrossRef]
    [Google Scholar]
  26. Martin, D. P., van der Walt, E., Posada, D. & Rybicki, E. P. ( 2005c; ). The evolutionary value of recombination is constrained by genome modularity. PLoS Genet 1, e51 [CrossRef]
    [Google Scholar]
  27. Monci, F., Sanchez-Campos, S., Navas-Castillo, J. & Moriones, E. ( 2002; ). A natural recombinant between the geminiviruses Tomato yellow leaf curl Sardinia virus and Tomato yellow leaf curl virus exhibits a novel pathogenic phenotype and is becoming prevalent in Spanish populations. Virology 303, 317–326.[CrossRef]
    [Google Scholar]
  28. Ndunguru, J., Legg, J. P., Aveling, T. A., Thompson, G. & Fauquet, C. M. ( 2005; ). Molecular biodiversity of cassava begomoviruses in Tanzania: evolution of cassava geminiviruses in Africa and evidence for East Africa being a center of diversity of cassava geminiviruses. Virol J 2, 21 [CrossRef]
    [Google Scholar]
  29. Padidam, M., Sawyer, S. & Fauquet, C. M. ( 1999; ). Possible emergence of new geminiviruses by frequent recombination. Virology 265, 218–225.[CrossRef]
    [Google Scholar]
  30. Paradis, E., Claude, J. & Strimmer, K. ( 2004; ). APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290.[CrossRef]
    [Google Scholar]
  31. Peterschmitt, M., Granier, M., Mekdoud, R., Dalmon, A., Gambin, O., Vayssières, J. F. & Reynaud, B. ( 1999; ). First report of tomato yellow leaf curl virus in Réunion Island. Plant Dis 83, 303
    [Google Scholar]
  32. Posada, D. ( 2006; ). ModelTest Server: a web-based tool for the statistical selection of models of nucleotide substitution online. Nucleic Acids Res 34, W700–W703.[CrossRef]
    [Google Scholar]
  33. Preiss, W. & Jeske, H. ( 2003; ). Multitasking in replication is common among geminiviruses. J Virol 77, 2972–2980.[CrossRef]
    [Google Scholar]
  34. Rambaut, A. & Drummond, A. J. ( 2004; ). Tracer v1.3, Available from http://evolve.zoo.ox.ac.uk/software.html
  35. Rojas, M. R., Gilbertson, R. L., Russel, D. R. & Maxwell, D. P. ( 1993; ). Use of degenerate primers in the polymerase chain reaction to detect whitefly-transmitted geminivirus. Plant Dis 77, 340–347.[CrossRef]
    [Google Scholar]
  36. Ronquist, F. & Huelsenbeck, J. P. ( 2003; ). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.[CrossRef]
    [Google Scholar]
  37. Rybicki, E. P. & Pietersen, G. ( 1999; ). Plant virus disease problems in the developing world. In Advances in Virus Research, vol. 53, pp. 127–178. Edited by K. Maramorosch, F. A. Murphy & A. J. Shatkin. San Diego, CA: Academic Press.
  38. Saraf, M. C. & Maranas, C. D. ( 2003; ). Using a residue clash map to functionally characterize protein recombination hybrids. Protein Eng 16, 1025–1034.[CrossRef]
    [Google Scholar]
  39. Saunders, K., Salim, N., Mali, V. R., Malathi, V. G., Briddon, R., Markham, P. G. & Stanley, J. ( 2002; ). Characterisation of Sri Lankan cassava mosaic virus and Indian cassava mosaic virus: evidence for acquisition of a DNA B component by a monopartite begomovirus. Virology 293, 63–74.[CrossRef]
    [Google Scholar]
  40. Schnippenkoetter, W. H., Martin, D. P., Willment, J. A. & Rybicki, E. P. ( 2001; ). Forced recombination between distinct strains of Maize streak virus. J Gen Virol 82, 3081–3090.
    [Google Scholar]
  41. Seal, S. E., vandenBosch, F. & Jeger, M. J. ( 2006; ). Factors influencing begomovirus evolution and their increasing global significance: implications for sustainable control. Crit Rev Plant Sci 25, 23–46.[CrossRef]
    [Google Scholar]
  42. Shimodaira, H. & Hasegawa, M. ( 1999; ). Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol 16, 1114–1116.[CrossRef]
    [Google Scholar]
  43. Smith, J. M. ( 1992; ). Analyzing the mosaic structure of genes. J Mol Evol 34, 126–129.
    [Google Scholar]
  44. Stanley, J. ( 1995; ). Analysis of African cassava mosaic virus recombinants suggests strand nicking occurs within the conserved nonanucleotide motif during the initiation of rolling circle DNA replication. Virology 206, 707–712.[CrossRef]
    [Google Scholar]
  45. Stenger, D. C., Revington, G. N., Stevenson, M. C. & Bisaro, D. M. ( 1991; ). Replicational release of geminivirus genomes from tandemly repeated copies: evidence for rolling-circle replication of a plant viral DNA. Proc Natl Acad Sci U S A 88, 8029–8033.[CrossRef]
    [Google Scholar]
  46. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  47. Umaharan, P., Padidam, M., Phelps, R. H., Beachy, R. N. & Fauquet, C. ( 1998; ). Distribution and diversity of geminiviruses in Trinidad and Tobago. Phytopathology 88, 1262–1268.[CrossRef]
    [Google Scholar]
  48. Voigt, C. A., Martinez, C., Wang, Z. G., Mayo, S. L. & Arnold, F. H. ( 2002; ). Protein building blocks preserved by recombination. Nat Struct Biol 9, 553–558.
    [Google Scholar]
  49. Wyatt, S. D. & Brown, J. K. ( 1996; ). Detection of subgroup III geminivirus isolates in leaf extracts by degenerate primers and polymerase chain reaction. Phytopathology 86, 1288–1293.[CrossRef]
    [Google Scholar]
  50. Zhou, X., Liu, Y., Calvert, L., Munoz, C., Otim-Nape, G. W., Robinson, D. J. & Harrison, B. D. ( 1997; ). Evidence that DNA-A of a geminivirus associated with severe cassava mosaic disease in Uganda has arisen by interspecific recombination. J Gen Virol 78, 2101–2111.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83252-0
Loading
/content/journal/jgv/10.1099/vir.0.83252-0
Loading

Data & Media loading...

Supplements

vol. , part 12, pp. 3458–3468

Supplementary material. [RDP file]



Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error