Functional analysis of human cytomegalovirus pUS28 mutants in infected cells Free

Abstract

The human cytomegalovirus (HCMV)-encoded viral G protein-coupled receptor pUS28 contributes to an array of biological effects, including cell migration and proliferation. Using FIX-BAC (bacterial artificial chromosome, derived from the HCMV clinical isolate VR1814) and lambda red recombination techniques, we generated HCMV recombinants expressing amino-terminally FLAG-tagged versions of wild-type pUS28 (FLAG–US28/WT), G-protein coupling deficient pUS28 (FLAG–US28/R129A) and chemokine-binding domain deficient pUS28 (FLAG–US28/ΔN). Infection with the FLAG–US28/R129A virus failed to induce inositol phosphate accumulation, indicating that G-protein coupling is essential for pUS28 signalling to phospholipase C- (PLC-) during HCMV infection. The FLAG–US28/ΔN virus induced about 80 % of the level of PLC- signalling induced by the FLAG–US28/WT virus, demonstrating that the N-terminal chemokine-binding domain is not required for pUS28-induced PLC- signalling in infected cells. The data presented here are the first to describe the functional analyses of several key pUS28 mutants in HCMV-infected cells. Elucidating the mechanisms by which pUS28 signals during infection will provide important insights into HCMV pathogenesis.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83226-0
2008-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/1/97.html?itemId=/content/journal/jgv/10.1099/vir.0.83226-0&mimeType=html&fmt=ahah

References

  1. Beisser P. S., Vink C., Van Dam J. G., Grauls G., Vanherle S. J., Bruggeman C. A. 1998; The R33 G protein-coupled receptor gene of rat cytomegalovirus plays an essential role in the pathogenesis of viral infection. J Virol 72:2352–2363
    [Google Scholar]
  2. Bennett T. A., Maestas D. C., Prossnitz E. R. 2000; Arrestin binding to the G protein-coupled N-formyl peptide receptor is regulated by the conserved “DRY” sequence. J Biol Chem 275:24590–24594 [CrossRef]
    [Google Scholar]
  3. Billstrom M. A., Johnson G. L., Avdi N. J., Worthen G. S. 1998; Intracellular signaling by the chemokine receptor US28 during human cytomegalovirus infection. J Virol 72:5535–5544
    [Google Scholar]
  4. Bodaghi B., Jones T. R., Zipeto D., Vita C., Sun L., Laurent L., Arenzana-Seisdedos F., Virelizier J. L., Michelson S. 1998; Chemokine sequestration by viral chemoreceptors as a novel viral escape strategy: withdrawal of chemokines from the environment of cytomegalovirus-infected cells. J Exp Med 188:855–866 [CrossRef]
    [Google Scholar]
  5. Boomker J. M., Verschuuren E. A., Brinker M. G., de Leij L. F., The T. H., Harmsen M. C. 2006; Kinetics of US28 gene expression during active human cytomegalovirus infection in lung-transplant recipients. J Infect Dis 193:1552–1556 [CrossRef]
    [Google Scholar]
  6. Borst E. M., Hahn G., Koszinowski U. H., Messerle M. 1999; Cloning of the human cytomegalovirus (HCMV) genome as an infectious bacterial artificial chromosome in Escherichia coli : a new approach for construction of HCMV mutants. J Virol 73:8320–8329
    [Google Scholar]
  7. Britt W. J., Jarvis M., Seo J. Y., Drummond D., Nelson J. 2004; Rapid genetic engineering of human cytomegalovirus by using a lambda phage linear recombination system: demonstration that pp28 (UL99) is essential for production of infectious virus. J Virol 78:539–543 [CrossRef]
    [Google Scholar]
  8. Browne H., Churcher M., Minson A. 1992; Identification, characterization and deletion analysis of HCMV gene products with homology to G protein-coupled receptors. The Seventeenth Annual International Herpesvirus Workshop 275
    [Google Scholar]
  9. Carroll F. Y., Stolle A., Beart P. M., Voerste A., Brabet I., Mauler F., Joly C., Antonicek H., Bockaert J. other authors 2001; BAY36–7620: a potent non-competitive mGlu1 receptor antagonist with inverse agonist activity. Mol Pharmacol 59:965–973
    [Google Scholar]
  10. Casarosa P., Bakker R. A., Verzijl D., Navis M., Timmerman H., Leurs R., Smit M. J. 2001; Constitutive signaling of the human cytomegalovirus-encoded chemokine receptor US28. J Biol Chem 276:1133–1137 [CrossRef]
    [Google Scholar]
  11. Casarosa P., Menge W. M., Minisini R., Otto C., van Heteren J., Jongejan A., Timmerman H., Moepps B., Kirchhoff F. other authors 2003; Identification of the first nonpeptidergic inverse agonist for a constitutively active viral-encoded G protein-coupled receptor. J Biol Chem 278:5172–5178 [CrossRef]
    [Google Scholar]
  12. Casarosa P., Waldhoer M., LiWang P. J., Vischer H. F., Kledal T., Timmerman H., Schwartz T. W., Smit M. J., Leurs R. 2005; CC and CX3C chemokines differentially interact with the N terminus of the human cytomegalovirus-encoded US28 receptor. J Biol Chem 280:3275–3285 [CrossRef]
    [Google Scholar]
  13. Chee M. S., Satchwell S. C., Preddie E., Weston K. M., Barrell B. G. 1990; Human cytomegalovirus encodes three G protein-coupled receptor homologues. Nature 344:774–777 [CrossRef]
    [Google Scholar]
  14. Chung D. A., Wade S. M., Fowler C. B., Woods D. D., Abada P. B., Mosberg H. I., Neubig R. R. 2002; Mutagenesis and peptide analysis of the DRY motif in the alpha2A adrenergic receptor: evidence for alternate mechanisms in G protein-coupled receptors. Biochem Biophys Res Commun 293:1233–1241 [CrossRef]
    [Google Scholar]
  15. Datsenko K. A., Wanner B. L. 2000; One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645 [CrossRef]
    [Google Scholar]
  16. Davis-Poynter N. J., Lynch D. M., Vally H., Shellam G. R., Rawlinson W. D., Barrell B. G., Farrell H. E. 1997; Identification and characterization of a G protein-coupled receptor homolog encoded by murine cytomegalovirus. J Virol 71:1521–1529
    [Google Scholar]
  17. Gao J. L., Murphy P. M. 1994; Human cytomegalovirus open reading frame US28 encodes a functional beta chemokine receptor. J Biol Chem 269:28539–28542
    [Google Scholar]
  18. Hahn G., Khan H., Baldanti F., Koszinowski U. H., Revello M. G., Gerna G. 2002; The human cytomegalovirus ribonucleotide reductase homolog UL45 is dispensable for growth in endothelial cells, as determined by a BAC-cloned clinical isolate of human cytomegalovirus with preserved wild-type characteristics. J Virol 76:9551–9555 [CrossRef]
    [Google Scholar]
  19. Kledal T. N., Rosenkilde M. M., Schwartz T. W. 1998; Selective recognition of the membrane-bound CX3C chemokine, fractalkine, by the human cytomegalovirus-encoded broad-spectrum receptor US28. FEBS Lett 441:209–214 [CrossRef]
    [Google Scholar]
  20. Kuhn D. E., Beall C. J., Kolattukudy P. E. 1995; The cytomegalovirus US28 protein binds multiple CC chemokines with high affinity. Biochem Biophys Res Commun 211:325–330 [CrossRef]
    [Google Scholar]
  21. Loh L. C., Keeler V. D., Shanley J. D. 1999; Sequence requirements for the nuclear localization of the murine cytomegalovirus M44 gene product pp50. Virology 259:43–59 [CrossRef]
    [Google Scholar]
  22. Maussang D., Verzijl D., van Walsum M., Leurs R., Holl J., Pleskoff O., Michel D., van Dongen G. A., Smit M. J. 2006; Human cytomegalovirus-encoded chemokine receptor US28 promotes tumorigenesis. Proc Natl Acad Sci U S A 103:13068–13073 [CrossRef]
    [Google Scholar]
  23. McLean K. A., Holst P. J., Martini L., Schwartz T. W., Rosenkilde M. M. 2004; Similar activation of signal transduction pathways by the herpesvirus-encoded chemokine receptors US28 and ORF74. Virology 325:241–251 [CrossRef]
    [Google Scholar]
  24. Melnychuk R. M., Streblow D. N., Smith P. P., Hirsch A. J., Pancheva D., Nelson J. A. 2004; Human cytomegalovirus-encoded G protein-coupled receptor US28 mediates smooth muscle cell migration through G α 12. J Virol 78:8382–8391 [CrossRef]
    [Google Scholar]
  25. Michelson S., Dal Monte P., Zipeto D., Bodaghi B., Laurent L., Oberlin E., Arenzana-Seisdedos F., Virelizier J. L., Landini M. P. 1997; Modulation of RANTES production by human cytomegalovirus infection of fibroblasts. J Virol 71:6495–6500
    [Google Scholar]
  26. Miller W. E., Houtz D. A., Nelson C. D., Kolattukudy P. E., Lefkowitz R. J. 2003; G-protein-coupled receptor (GPCR) kinase phosphorylation and beta-arrestin recruitment regulate the constitutive signaling activity of the human cytomegalovirus US28 GPCR. J Biol Chem 278:21663–21671 [CrossRef]
    [Google Scholar]
  27. Minisini R., Tulone C., Luske A., Michel D., Mertens T., Gierschik P., Moepps B. 2003; Constitutive inositol phosphate formation in cytomegalovirus-infected human fibroblasts is due to expression of the chemokine receptor homologue pUS28. J Virol 77:4489–4501 [CrossRef]
    [Google Scholar]
  28. Mokros T., Rehm A., Droese J., Oppermann M., Lipp M., Hopken U. E. 2002; Surface expression and endocytosis of the human cytomegalovirus-encoded chemokine receptor US28 is regulated by agonist-independent phosphorylation. J Biol Chem 277:45122–45128 [CrossRef]
    [Google Scholar]
  29. Neote K., DiGregorio D., Mak J. Y., Horuk R., Schall T. J. 1993; Molecular cloning, functional expression, and signaling characteristics of a C-C chemokine receptor. Cell 72:415–425 [CrossRef]
    [Google Scholar]
  30. Oppenheim A. B., Rattray A. J., Bubunenko M., Thomason L. C., Court D. L. 2004; In vivo recombineering of bacteriophage λ by PCR fragments and single-strand oligonucleotides. Virology 319:185–189 [CrossRef]
    [Google Scholar]
  31. Pleskoff O., Casarosa P., Verneuil L., Ainoun F., Beisser P., Smit M., Leurs R., Schneider P., Michelson S., Ameisen J. C. 2005; The human cytomegalovirus-encoded chemokine receptor US28 induces caspase-dependent apoptosis. FEBS J 272:4163–4177 [CrossRef]
    [Google Scholar]
  32. Quitterer U., AbdAlla S., Jarnagin K., Müller-Esterl W. 1996; Na+ ions binding to the bradykinin B2 receptor suppress agonist-independent receptor activation. Biochemistry 35:13368–13377 [CrossRef]
    [Google Scholar]
  33. Randolph-Habecker J. R., Rahill B., Torok-Storb B., Vieira J., Kolattukudy P. E., Rovin B. H., Sedmak D. D. 2002; The expression of the cytomegalovirus chemokine receptor homolog US28 sequesters biologically active CC chemokines and alters IL-8 production. Cytokine 19:37–46 [CrossRef]
    [Google Scholar]
  34. Rhee M. H., Nevo I., Levy R., Vogel Z. 2000; Role of the highly conserved Asp-Arg-Tyr motif in signal transduction of the CB2 cannabinoid receptor. FEBS Lett 466:300–304 [CrossRef]
    [Google Scholar]
  35. Rigoutsos I., Novotny J., Huynh T., Chin-Bow S. T., Parida L., Platt D., Coleman D., Shenk T. 2003; In silico pattern-based analysis of the human cytomegalovirus genome. J Virol 77:4326–4344 [CrossRef]
    [Google Scholar]
  36. Seifert R., Wenzel-Seifert K. 2002; Constitutive activity of G-protein-coupled receptors: cause of disease and common property of wild-type receptors. Naunyn Schmiedebergs Arch Pharmacol 366:381–416 [CrossRef]
    [Google Scholar]
  37. Streblow D. N., Soderberg-Naucler C., Vieira J., Smith P., Wakabayashi E., Ruchti F., Mattison K., Altschuler Y., Nelson J. A. 1999; The human cytomegalovirus chemokine receptor US28 mediates vascular smooth muscle cell migration. Cell 99:511–520 [CrossRef]
    [Google Scholar]
  38. Streblow D. N., Vomaske J., Smith P., Melnychuk R., Hall L., Pancheva D., Smit M., Casarosa P., Schlaepfer D. D., Nelson J. A. 2003; Human cytomegalovirus chemokine receptor US28-induced smooth muscle cell migration is mediated by focal adhesion kinase and Src. J Biol Chem 278:50456–50465 [CrossRef]
    [Google Scholar]
  39. Taylor R. T., Bresnahan W. A. 2006; Human cytomegalovirus immediate-early 2 protein IE86 blocks virus-induced chemokine expression. J Virol 80:920–928 [CrossRef]
    [Google Scholar]
  40. Vieira J., Schall T. J., Corey L., Geballe A. P. 1998; Functional analysis of the human cytomegalovirus US28 gene by insertion mutagenesis with the green fluorescent protein gene. J Virol 72:8158–8165
    [Google Scholar]
  41. Wagner M., Koszinowski U. H. 2004; Mutagenesis of viral BACs with linear PCR fragments (ET recombination). Methods Mol Biol 256:257–268
    [Google Scholar]
  42. Waldhoer M., Kledal T. N., Farrell H., Schwartz T. W. 2002; Murine cytomegalovirus (CMV) M33 and human CMV US28 receptors exhibit similar constitutive signaling activities. J Virol 76:8161–8168 [CrossRef]
    [Google Scholar]
  43. Waldhoer M., Casarosa P., Rosenkilde M. M., Smit M. J., Leurs R., Whistler J. L., Schwartz T. W. 2003; The carboxyl terminus of human cytomegalovirus-encoded 7 transmembrane receptor US28 camouflages agonism by mediating constitutive endocytosis. J Biol Chem 278:19473–19482 [CrossRef]
    [Google Scholar]
  44. Welch A. R., McGregor L. M., Gibson W. 1991; Cytomegalovirus homologs of cellular G protein-coupled receptor genes are transcribed. J Virol 65:3915–3918
    [Google Scholar]
  45. Zipeto D., Bodaghi B., Laurent L., Virelizier J. L., Michelson S. 1999; Kinetics of transcription of human cytomegalovirus chemokine receptor US28 in different cell types. J Gen Virol 80:543–547
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83226-0
Loading
/content/journal/jgv/10.1099/vir.0.83226-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed