Naturally arising point mutations in non-essential domains of equine infectious anemia virus Rev alter Rev-dependent nuclear-export activity Free

Abstract

Equine infectious anemia virus (EIAV) exhibits a high rate of genetic variation , and results in a clinically variable disease in infected horses. populations of EIAV have been characterized by the presence of distinct, genetic subpopulations of Rev that differ in phenotype and fluctuate in dominance in a manner coincident with each clinical stage of disease. This study examined the specific mutations that arose and altered the phenotype. The Rev protein was found to be highly conserved, and only 10 aa mutations were observed at a frequency greater than 10 % in the sample population. Nine of these mutations were capable of significantly altering Rev activity, either as single mutations in the context of the founder variant, or in the context of cumulatively fixed mutations. The results indicated that limited genetic variation outside the essential functional domains of Rev can alter the phenotype and may confer a selective advantage .

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83195-0
2008-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/4/1043.html?itemId=/content/journal/jgv/10.1099/vir.0.83195-0&mimeType=html&fmt=ahah

References

  1. Addo M. M., Altfeld M., Rosenberg E. S., Eldridge R. L., Phillips M. N., Habeeb K., Khatri A., Brander C., Robbins G. K. & other authors HIV Controller Study Collaboration; 2001; The HIV-1 regulatory proteins Tat and Rev are frequently targeted by cytotoxic T lymphocytes derived from HIV-1-infected individuals. Proc Natl Acad Sci U S A 98:1781–1786 [CrossRef]
    [Google Scholar]
  2. Alexandersen S., Carpenter S. 1991; Characterization of variable regions in the envelope and S3 open reading frame of equine infectious anemia virus. J Virol 65:4255–4262
    [Google Scholar]
  3. Allen T. M., Altfeld M., Geer S. C., Kalife E. T., Moore C., O'Sullivan K. M., Desouza I., Feeney M. E., Eldridge R. L. other authors 2005; Selective escape from CD8+ T-cell responses represents a major driving force of human immunodeficiency virus type 1 (HIV-1) sequence diversity and reveals constraints on HIV-1 evolution. J Virol 79:13239–13249 [CrossRef]
    [Google Scholar]
  4. Baccam P., Thompson R. J., Li Y., Sparks W. O., Belshan M., Dorman K. S., Wannemuehler Y., Oaks J. L., Cornette J. L., Carpenter S. 2003; Subpopulations of equine infectious anemia virus Rev coexist in vivo and differ in phenotype. J Virol 77:12122–12131 [CrossRef]
    [Google Scholar]
  5. Belshan M., Harris M. E., Shoemaker A. E., Hope T. J., Carpenter S. 1998; Biological characterization of Rev variation in equine infectious anemia virus. J Virol 72:4421–4426
    [Google Scholar]
  6. Belshan M., Baccam P., Oaks J. L., Sponseller B. A., Murphy S. C., Cornette J., Carpenter S. 2001; Genetic and biological variation in equine infectious anemia virus Rev correlates with variable stages of clinical disease in an experimentally infected pony. Virology 279:185–200 [CrossRef]
    [Google Scholar]
  7. Bobbitt K. R., Addo M. M., Altfeld M., Filzen T., Onafuwa A. A., Walker B. D., Collins K. L. 2003; Rev activity determines sensitivity of HIV-1-infected primary T cells to CTL killing. Immunity 18:289–299 [CrossRef]
    [Google Scholar]
  8. Coffin J. M. 1995; HIV population dynamics in vivo : implications for genetic variation, pathogenesis, and therapy. Science 267:483–489 [CrossRef]
    [Google Scholar]
  9. Cosson P. 1996; Direct interaction between the envelope and matrix proteins of HIV-1. EMBO J 15:5783–5788
    [Google Scholar]
  10. Dubay J. W., Roberts S. J., Hahn B. H., Hunter E. 1992; Truncation of the human immunodeficiency virus type 1 transmembrane glycoprotein cytoplasmic domain blocks virus infectivity. J Virol 66:6616–6625
    [Google Scholar]
  11. Freed E. O., Martin M. A. 1996; Domains of the human immunodeficiency virus type 1 matrix and gp41 cytoplasmic tail required for envelope incorporation into virions. J Virol 70:341–351
    [Google Scholar]
  12. Fridell R. A., Partin K. M., Carpenter S., Cullen B. R. 1993; Identification of the activation domain of equine infectious anemia virus rev. J Virol 67:7317–7323
    [Google Scholar]
  13. Fultz P. N., Vance P. J., Endres M. J., Tao B., Dvorin J. D., Davis I. C., Lifson J. D., Montefiori D. C., Marsh M. other authors 2001; In vivo attenuation of simian immunodeficiency virus by disruption of a tyrosine-dependent sorting signal in the envelope glycoprotein cytoplasmic tail. J Virol 75:278–291 [CrossRef]
    [Google Scholar]
  14. Gabuzda D. H., Lever A., Terwilliger E., Sodroski J. 1992; Effects of deletions in the cytoplasmic domain on biological functions of human immunodeficiency virus type 1 envelope glycoproteins. J Virol 66:3306–3315
    [Google Scholar]
  15. Harris M. E., Gontarek R. R., Derse D., Hope T. J. 1998; Differential requirements for alternative splicing and nuclear export functions of equine infectious anemia virus Rev protein. Mol Cell Biol 18:3889–3899
    [Google Scholar]
  16. Kalia V., Sarkar S., Gupta P., Montelaro R. C. 2003; Rational site-directed mutations of LLP-1 and LLP-2 lentivirus lytic peptide domains in the intracytoplasmic tail of human immunodeficiency virus type 1 gp41 indicate common functions in cell-cell fusion but distinct roles in virion envelope incorporation. J Virol 77:3634–3646 [CrossRef]
    [Google Scholar]
  17. Lee S. J., Hu W., Fisher A. G., Looney D. J., Kao V. F., Mitsuya H., Ratner L., Wong-Staal F. 1989; Role of the carboxy-terminal portion of the HIV-1 transmembrane protein in viral transmission and cytopathogenicity. AIDS Res Hum Retroviruses 5:441–449 [CrossRef]
    [Google Scholar]
  18. Lee J.-H., Murphy S. C., Belshan M., Sparks W. O., Wannemuehler Y., Liu S., Hope T. J., Dobbs D., Carpenter S. 2006; Characterization of functional domains of equine infectious anemia virus Rev suggests a bipartite RNA-binding domain. J Virol 80:3844–3852 [CrossRef]
    [Google Scholar]
  19. Leroux C., Issel C. J., Montelaro R. C. 1997; Novel and dynamic evolution of equine infectious anemia virus genomic quasispecies associated with sequential disease cycles in an experimentally infected pony. J Virol 71:9627–9639
    [Google Scholar]
  20. Liu Y., McNevin J., Zhao H., Tebit D. M., Troyer R. M., McSweyn M., Ghosh A. K., Shriner D., Arts E. J. other authors 2007; Evolution of human immunodeficiency virus type 1 cytotoxic T-lymphocyte epitopes: fitness-balanced escape. J Virol 81:12179–12188 [CrossRef]
    [Google Scholar]
  21. Mancuso V. A., Hope T. J., Zhu L., Derse D., Phillips T., Parslow T. G. 1994; Posttranscriptional effector domains in the rev proteins of feline immunodeficiency virus and equine infectious anemia virus. J Virol 68:1998–2001
    [Google Scholar]
  22. Mealey R. H., Zhang B., Leib S. R., Littke M. H., McGuire T. C. 2003; Epitope specificity is critical for high and moderate avidity cytotoxic T lymphocytes associated with control of viral load and clinical disease in horses with equine infectious anemia virus. Virology 313:537–552 [CrossRef]
    [Google Scholar]
  23. Shacklett B. L., Weber C. J., Shaw K. E. S., Keddie E. M., Gardner M. B., Sonigo P., Luciw P. A. 2000; The intracytoplasmic domain of the Env transmembrane protein is a locus for attenuation of simian immunodeficiency virus SIVmac in rhesus macaques. J Virol 74:5836–5844 [CrossRef]
    [Google Scholar]
  24. Sponseller B. A., Sparks W. O., Wannemuehler Y., Li Y., Antons A. K., Oaks J. L., Carpenter S. 2007; Immune selection of equine infectious anemia virus env variants during the long-term inapparent stage of disease. Virology 363:156–165 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83195-0
Loading
/content/journal/jgv/10.1099/vir.0.83195-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed