1887

Abstract

Semliki Forest virus (SFV) infection of the mouse provides a powerful model to study the pathogenesis of virus encephalitis. SFV and other alphavirus-based vector systems are increasingly used in biotechnology and medicine. This study analysed the strong susceptibility of this virus to type I interferon (IFN) responses. Following intraperitoneal infection of adult mice, SFV strain A7(74) was efficiently (100 %) neuroinvasive. In contrast, SFV4 was poorly (21 %) neuroinvasive. Upon entry into the brain, both viruses activated type I IFN responses. As determined by quantitative RT-PCR, activation of the IFN- gene was proportional to virus RNA load. An intact type I IFN system was required for protection against both strains of SFV. IFN strongly curtailed virus spread in many cell types and in many tissues. In mice with an intact type I IFN system, infected cells were rarely observed and tissue tropism was difficult to determine. In the absence of a functional type I IFN system, the tropism and the potential for rapid and widespread infection of this virus was revealed. Virus infection was readily observed in the myocardium, endocardium, exocrine pancreas, adipose tissue, smooth muscle cells and in the brain in meningeal cells, ependymal cells and oligodendrocytes. In the brains of mice with and without type I IFN responses, virus infection of neurons remained rare and focal, indicating that the previously described restricted replication of SFV A7(74) in neurons is not mediated by type I IFN responses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83191-0
2007-12-01
2019-11-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/12/3373.html?itemId=/content/journal/jgv/10.1099/vir.0.83191-0&mimeType=html&fmt=ahah

References

  1. Aguilar, P. V., Paessler, S., Carrara, A. S., Baron, S., Poast, J., Wang, E., Moncayo, A. C., Anishchenko, M., Watts, D. & other authors ( 2005; ). Variation in interferon sensitivity and induction among strains of eastern equine encephalitis virus. J Virol 79, 11300–11310.[CrossRef]
    [Google Scholar]
  2. Allsopp, T. E. & Fazakerley, J. K. ( 2000; ). Altruistic cell suicide and the specialized case of the virus-infected nervous system. Trends Neurosci 23, 284–290.[CrossRef]
    [Google Scholar]
  3. Amor, S. & Webb, H. E. ( 1986; ). Use of N-acetylethyleneimine (AEI) for the inactivation of Semliki Forest virus in vitro. J Med Virol 19, 367–376.[CrossRef]
    [Google Scholar]
  4. Barber, S. A., Herbst, D. S., Bullock, B. T., Gama, L. & Clements, J. E. ( 2004; ). Innate immune responses and control of acute simian immunodeficiency virus replication in the central nervous system. J Neurovirol 10 (Suppl. 1), 15–20.
    [Google Scholar]
  5. Boyd, A., Fazakerley, J. K. & Bridgen, A. ( 2006; ). Pathogenesis of Dugbe virus infection in wild-type and interferon-deficient mice. J Gen Virol 87, 2005–2009.[CrossRef]
    [Google Scholar]
  6. Bradish, C. J. & Titmuss, D. ( 1981; ). The effects of interferon and double-stranded RNA upon the virus–host interaction: studies with togavirus strains in mice. J Gen Virol 53, 21–30.[CrossRef]
    [Google Scholar]
  7. Bradish, C. J., Allner, K. & Maber, H. B. ( 1971; ). The virulence of original and derived strains of Semliki Forest virus for mice, guinea-pigs and rabbits. J Gen Virol 12, 141–160.[CrossRef]
    [Google Scholar]
  8. Bradish, C. J., Allner, K. & Fitzgeorge, R. ( 1975; ). Immunomodification and the expression of virulence in mice by defined strains of Semliki Forest virus: the effects of cyclophosphamide. J Gen Virol 28, 225–237.[CrossRef]
    [Google Scholar]
  9. Bray, M. ( 2001; ). The role of the type I interferon response in the resistance of mice to filovirus infection. J Gen Virol 82, 1365–1373.
    [Google Scholar]
  10. Breakwell, L., Dosenovic, P., Karlsson Hedestam, G. B., D'Amato, M., Liljeström, P., Fazakerley, J. & McInerney, G. M. ( 2007; ). Semliki Forest virus non-structural protein 2 is involved in the suppression of the type I interferon response. J Virol 81, 8677–8684.[CrossRef]
    [Google Scholar]
  11. Bridgen, A., Weber, F., Fazakerley, J. K. & Elliott, R. M. ( 2001; ). Bunyamwera bunyavirus nonstructural protein NSs is a nonessential gene product that contributes to viral pathogenesis. Proc Natl Acad Sci U S A 98, 664–669.[CrossRef]
    [Google Scholar]
  12. Brown, A. R., Webb, J., Rebus, S., Walker, R., Williams, A. & Fazakerley, J. K. ( 2003; ). Inducible cytokine gene expression in the brain in the ME7/CV mouse model of scrapie is highly restricted, is at a strikingly low level relative to the degree of gliosis and occurs only late in disease. J Gen Virol 84, 2605–2611.[CrossRef]
    [Google Scholar]
  13. Burch, G. E., DePasquale, N. P., Sun, S. C., Mogabgab, W. J. & Hale, A. R. ( 1966; ). Endocarditis in mice infected with Coxsackie virus B4. Science 151, 447–448.[CrossRef]
    [Google Scholar]
  14. Delhaye, S., Paul, S., Blakqori, G., Minet, M., Weber, F., Staeheli, P. & Michiels, T. ( 2006; ). Neurons produce type I interferon during viral encephalitis. Proc Natl Acad Sci U S A 103, 7835–7840.[CrossRef]
    [Google Scholar]
  15. Deuber, S. A. & Pavlovic, J. ( 2007; ). Virulence of a mouse-adapted Semliki Forest virus strain is associated with reduced susceptibility to interferon. J Gen Virol 88, 1952–1959.[CrossRef]
    [Google Scholar]
  16. Dussaix, E., Lebon, P., Ponsot, G., Huault, G. & Tardieu, M. ( 1985; ). Intrathecal synthesis of different α-interferons in patients with various neurological diseases. Acta Neurol Scand 71, 504–509.
    [Google Scholar]
  17. Fauconnier, B. ( 1971; ). Effect of an anti-interferon serum on experimental viral pathogenicity in vivo. Pathol Biol (Paris) 19, 575–578 (in French).
    [Google Scholar]
  18. Fazakerley, J. K. ( 2004; ). Semliki Forest virus infection of laboratory mice: a model to study the pathogenesis of viral encephalitis. Arch Virol Suppl 18, 179–190.
    [Google Scholar]
  19. Fazakerley, J. K. & Webb, H. E. ( 1987; ). Semliki Forest virus-induced, immune-mediated demyelination: adoptive transfer studies and viral persistence in nude mice. J Gen Virol 68, 377–385.[CrossRef]
    [Google Scholar]
  20. Fazakerley, J. K., Pathak, S., Scallan, M., Amor, S. & Dyson, H. ( 1993; ). Replication of the A7(74) strain of Semliki Forest virus is restricted in neurons. Virology 195, 627–637.[CrossRef]
    [Google Scholar]
  21. Fazakerley, J. K., Boyd, A., Mikkola, M. L. & Kaariainen, L. ( 2002; ). A single amino acid change in the nuclear localization sequence of the nsP2 protein affects the neurovirulence of Semliki Forest virus. J Virol 76, 392–396.[CrossRef]
    [Google Scholar]
  22. Fazakerley, J. K., Cotterill, C. L., Lee, G. & Graham, A. ( 2006; ). Virus tropism, distribution, persistence and pathology in the corpus callosum of the Semliki Forest virus-infected mouse brain: a novel system to study virus–oligodendrocyte interactions. Neuropathol Appl Neurobiol 32, 397–409.[CrossRef]
    [Google Scholar]
  23. Fiette, L., Aubert, C., Muller, U., Huang, S., Aguet, M., Brahic, M. & Bureau, J. F. ( 1995; ). Theiler's virus infection of 129sv mice that lack the interferon alpha/beta or interferon gamma receptors. J Exp Med 181, 2069–2076.[CrossRef]
    [Google Scholar]
  24. Finter, N. B. ( 1966; ). Interferon as an antiviral agent in vivo: quantitative and temporal aspects of the protection of mice against Semliki Forest virus. Br J Exp Pathol 47, 361–371.
    [Google Scholar]
  25. Frolov, I. ( 2004; ). Persistent infection and suppression of host response by alphaviruses. Arch Virol Suppl 18, 139–147.
    [Google Scholar]
  26. Garcia-Sastre, A., Durbin, R. K., Zheng, H., Palese, P., Gertner, R., Levy, D. E. & Durbin, J. E. ( 1998; ). The role of interferon in influenza virus tissue tropism. J Virol 72, 8550–8558.
    [Google Scholar]
  27. Garmashova, N., Gorchakov, R., Volkova, E., Paessler, S., Frolova, E. & Frolov, I. ( 2007; ). The Old World and New World alphaviruses use different virus-specific proteins for induction of transcriptional shutoff. J Virol 81, 2472–2484.[CrossRef]
    [Google Scholar]
  28. Glasgow, G. M., Sheahan, B. J., Atkins, G. J., Wahlberg, J. M., Salminen, A. & Liljeström, P. ( 1991; ). Two mutations in the envelope glycoprotein E2 of Semliki Forest virus affecting the maturation and entry patterns of the virus alter pathogenicity for mice. Virology 185, 741–748.[CrossRef]
    [Google Scholar]
  29. Glasgow, G. M., Mcgee, M. M., Sheahan, B. J. & Atkins, G. J. ( 1997; ). Death mechanisms in cultured cells infected by Semliki Forest virus. J Gen Virol 78, 1559–1563.
    [Google Scholar]
  30. Grieder, F. B. & Vogel, S. N. ( 1999; ). Role of interferon and interferon regulatory factors in early protection against Venezuelan equine encephalitis virus infection. Virology 257, 106–118.[CrossRef]
    [Google Scholar]
  31. Haller, O., Kochs, G. & Weber, F. ( 2006; ). The interferon response circuit: induction and suppression by pathogenic viruses. Virology 344, 119–130.[CrossRef]
    [Google Scholar]
  32. Hwang, S. Y., Hertzog, P. J., Holland, K. A., Sumarsono, S. H., Tymms, M. J., Hamilton, J. A., Whitty, G., Bertoncello, I. & Kola, I. ( 1995; ). A null mutation in the gene encoding a type I interferon receptor component eliminates antiproliferative and antiviral responses to interferons α and β and alters macrophage responses. Proc Natl Acad Sci U S A 92, 11284–11288.[CrossRef]
    [Google Scholar]
  33. Johnson, N., McKimmie, C. S., Mansfield, K. L., Wakeley, P. R., Brookes, S. M., Fazakerley, J. K. & Fooks, A. R. ( 2006; ). Lyssavirus infection activates interferon gene expression in the brain. J Gen Virol 87, 2663–2667.[CrossRef]
    [Google Scholar]
  34. Karlsson, G. B. & Liljeström, P. ( 2004; ). Delivery and expression of heterologous genes in mammalian cells using self-replicating alphavirus vectors. Methods Mol Biol 246, 543–557.
    [Google Scholar]
  35. Koerner, I., Kochs, G., Kalinke, U., Weiss, S. & Staeheli, P. ( 2007; ). Protective role of beta interferon in host defense against influenza A virus. J Virol 81, 2025–2030.[CrossRef]
    [Google Scholar]
  36. Li, Y., Pan, Z., Ji, Y., Peng, T., Archard, L. C. & Zhang, H. ( 2002; ). Enterovirus replication in valvular tissue from patients with chronic rheumatic heart disease. Eur Heart J 23, 567–573.[CrossRef]
    [Google Scholar]
  37. Liljeström, P. & Garoff, H. ( 1991; ). A new generation of animal cell expression vectors based on the Semliki Forest virus replicon. Biotechnology (N Y) 9, 1356–1361.[CrossRef]
    [Google Scholar]
  38. Mathiot, C. C., Grimaud, G., Garry, P., Bouquety, J. C., Mada, A., Daguisy, A. M. & Georges, A. J. ( 1990; ). An outbreak of human Semliki Forest virus infections in Central African Republic. Am J Trop Med Hyg 42, 386–393.
    [Google Scholar]
  39. McIntosh, B. M., Brookworth, C. & Kokernot, R. H. ( 1961; ). Isolation of Semliki Forest virus from Aedes (Aedimorphus) argenteopunctatus (Theobald) collected in Portuguese East Africa. Trans R Soc Trop Med Hyg 55, 192 [CrossRef]
    [Google Scholar]
  40. McKimmie, C. S. & Fazakerley, J. K. ( 2005; ). In response to pathogens, glial cells dynamically and differentially regulate Toll-like receptor gene expression. J Neuroimmunol 169, 116–125.[CrossRef]
    [Google Scholar]
  41. Mrkic, B., Pavlovic, J., Rulicke, T., Volpe, P., Buchholz, C. J., Hourcade, D., Atkinson, J. P., Aguzzi, A. & Cattaneo, R. ( 1998; ). Measles virus spread and pathogenesis in genetically modified mice. J Virol 72, 7420–7427.
    [Google Scholar]
  42. Muller, U., Steinhoff, U., Reis, L., Hemmi, S., Pavlovic, J., Zinkernagel, R. M. & Aguet, M. ( 1994; ). Functional role of type I and type II interferons in antiviral defense. Science 264, 1918–1921.[CrossRef]
    [Google Scholar]
  43. Ogata, S., Ogata, A., Schneider-Schaulies, S. & Schneider-Schaulies, J. ( 2004; ). Expression of the interferon-α/β-inducible MxA protein in brain lesions of subacute sclerosing panencephalitis. J Neurol Sci 223, 113–119.[CrossRef]
    [Google Scholar]
  44. Oliver, K. R. & Fazakerley, J. K. ( 1998; ). Transneuronal spread of Semliki Forest virus in the developing mouse olfactory system is determined by neuronal maturity. Neuroscience 82, 867–877.
    [Google Scholar]
  45. Oliver, K. R., Scallan, M. F., Dyson, H. & Fazakerley, J. K. ( 1997; ). Susceptibility to a neurotropic virus and its changing distribution in the developing brain is a function of CNS maturity. J Neurovirol 3, 38–48.[CrossRef]
    [Google Scholar]
  46. Ousman, S. S., Wang, J. & Campbell, I. L. ( 2005; ). Differential regulation of interferon regulatory factor (IRF)-7 and IRF-9 gene expression in the central nervous system during viral infection. J Virol 79, 7514–7527.[CrossRef]
    [Google Scholar]
  47. Parsons, L. M. & Webb, H. E. ( 1982; ). Blood brain barrier disturbance and immunoglobulin G levels in the cerebrospinal fluid of the mouse following peripheral infection with the demyelinating strain of Semliki Forest virus. J Neurol Sci 57, 307–318.[CrossRef]
    [Google Scholar]
  48. Prehaud, C., Megret, F., Lafage, M. & Lafon, M. ( 2005; ). Virus infection switches TLR-3-positive human neurons to become strong producers of beta interferon. J Virol 79, 12893–12904.[CrossRef]
    [Google Scholar]
  49. Pusztai, R., Gould, E. & Smith, H. ( 1971; ). Infection pattern in mice of an avirulent and virulent strain of Semliki Forest virus. Br J Exp Pathol 52, 669–677.
    [Google Scholar]
  50. Roberts, E. S., Burudi, E. M., Flynn, C., Madden, L. J., Roinick, K. L., Watry, D. D., Zandonatti, M. A., Taffe, M. A. & Fox, H. S. ( 2004; ). Acute SIV infection of the brain leads to upregulation of IL6 and interferon-regulated genes: expression patterns throughout disease progression and impact on neuroAIDS. J Neuroimmunol 157, 81–92.[CrossRef]
    [Google Scholar]
  51. Ryman, K. D., Klimstra, W. B., Nguyen, K. B., Biron, C. A. & Johnston, R. E. ( 2000; ). Alpha/beta interferon protects adult mice from fatal Sindbis virus infection and is an important determinant of cell and tissue tropism. J Virol 74, 3366–3378.[CrossRef]
    [Google Scholar]
  52. Scallan, M. F. & Fazakerley, J. K. ( 1999; ). Aurothiolates enhance the replication of Semliki Forest virus in the CNS and the exocrine pancreas. J Neurovirol 5, 392–400.[CrossRef]
    [Google Scholar]
  53. Scallan, M. F., Allsopp, T. E. & Fazakerley, J. K. ( 1997; ). bcl-2 acts early to restrict Semliki Forest virus replication and delays virus-induced programmed cell death. J Virol 71, 1583–1590.
    [Google Scholar]
  54. Schuffenecker, I., Iteman, I., Michault, A., Murri, S., Frangeul, L., Vaney, M. C., Lavenir, R., Pardigon, N., Reynes, J. M. & other authors ( 2006; ). Genome microevolution of chikungunya viruses causing the Indian Ocean outbreak. PLoS Med 3, e263 [CrossRef]
    [Google Scholar]
  55. Seamer, J., Randles, W. J. & Fitzgeorge, R. ( 1967; ). The course of Semliki Forest virus infection in mice. Br J Exp Pathol 48, 395–402.
    [Google Scholar]
  56. Smerdou, C. & Liljeström, P. ( 1999; ). Two-helper RNA system for production of recombinant Semliki Forest virus particles. J Virol 73, 1092–1098.
    [Google Scholar]
  57. Smillie, J., Pusztai, R. & Smith, H. ( 1973; ). Studies on the influence of host defence mechanisms on infection of mice with an avirulent or virulent strain of Semliki Forest virus. Br J Exp Pathol 54, 260–266.
    [Google Scholar]
  58. Smithburn, K. C. & Haddow, W. J. ( 1944; ). Semliki Forest virus. I. Isolation and pathogenic properties. J Immunol 49, 141–145.
    [Google Scholar]
  59. Thomas, J. M., Klimstra, W. B., Ryman, K. D. & Heidner, H. W. ( 2003; ). Sindbis virus vectors designed to express a foreign protein as a cleavable component of the viral structural polyprotein. J Virol 77, 5598–5606.[CrossRef]
    [Google Scholar]
  60. Tuittila, M. T., Santagati, M. G., Roytta, M., Maatta, J. A. & Hinkkanen, A. E. ( 2000; ). Replicase complex genes of Semliki Forest virus confer lethal neurovirulence. J Virol 74, 4579–4589.[CrossRef]
    [Google Scholar]
  61. Vaha-Koskela, M. J., Tuittila, M. T., Nygardas, P. T., Nyman, J. K., Ehrengruber, M. U., Renggli, M. & Hinkkanen, A. E. ( 2003; ). A novel neurotropic expression vector based on the avirulent A7(74) strain of Semliki Forest virus. J Neurovirol 9, 1–15.[CrossRef]
    [Google Scholar]
  62. Wang, J. & Campbell, I. L. ( 2005; ). Innate STAT1-dependent genomic response of neurons to the antiviral cytokine alpha interferon. J Virol 79, 8295–8302.[CrossRef]
    [Google Scholar]
  63. Wang, J., Schreiber, R. D. & Campbell, I. L. ( 2002; ). STAT1 deficiency unexpectedly and markedly exacerbates the pathophysiological actions of IFN-α in the central nervous system. Proc Natl Acad Sci U S A 99, 16209–16214.[CrossRef]
    [Google Scholar]
  64. Ward, L. A. & Massa, P. T. ( 1995; ). Neuron-specific regulation of major histocompatibility complex class I, interferon-β, and anti-viral state genes. J Neuroimmunol 58, 145–155.[CrossRef]
    [Google Scholar]
  65. Wichmann, D., Grone, H. J., Frese, M., Pavlovic, J., Anheier, B., Haller, O., Klenk, H. D. & Feldmann, H. ( 2002; ). Hantaan virus infection causes an acute neurological disease that is fatal in adult laboratory mice. J Virol 76, 8890–8899.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83191-0
Loading
/content/journal/jgv/10.1099/vir.0.83191-0
Loading

Data & Media loading...

Supplements

vol. , part 12, pp. 3373 – 3384

[ PDF] (346 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error