1887

Abstract

The E6 proteins of high-risk genital human papillomaviruses (HPV), such as HPV types 16 and 18, possess a conserved C-terminal PDZ-binding motif, which mediates interaction with some cellular PDZ domain proteins. The binding of E6 usually results in their ubiquitin-mediated degradation. The ability of E6 to bind to PDZ domain proteins correlates with the oncogenic potential. Using a yeast two-hybrid system, GST pull-down experiments and coimmunoprecipitations, we identified the protein tyrosine phosphatase H1 (PTPH1/PTPN3) as a novel target of the PDZ-binding motif of E6 of HPV16 and 18. PTPH1 has been suggested to function as tumour suppressor protein, since mutational analysis revealed somatic mutations in PTPH1 in a minor fraction of various human tumours. We show here that HPV16 E6 accelerated the proteasome-mediated degradation of PTPH1, which required the binding of E6 to the cellular ubiquitin ligase E6-AP and to PTPH1. The endogenous levels of PTPH1 were particularly low in HPV-positive cervical carcinoma cell lines. The reintroduction of the E2 protein into the HPV16-positive cervical carcinoma cell line SiHa, known to lead to a sharp repression of E6 expression and to induce growth suppression, resulted in an increase of the amount of PTPH1. Our data suggest that reducing the level of PTPH1 may contribute to the oncogenic activity of high-risk genital E6 proteins.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83123-0
2007-11-01
2019-11-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/11/2956.html?itemId=/content/journal/jgv/10.1099/vir.0.83123-0&mimeType=html&fmt=ahah

References

  1. Arpin, M., Algrain, M. & Louvard, D. ( 1994; ). Membrane-actin microfilament connections: an increasing diversity of players related to band 4.1. Curr Opin Cell Biol 6, 136–141.[CrossRef]
    [Google Scholar]
  2. Blachon, S. & Demeret, C. ( 2003; ). The regulatory E2 proteins of human genital papillomaviruses are pro-apoptotic. Biochimie 85, 813–839.[CrossRef]
    [Google Scholar]
  3. Demeret, C., Garcia-Carranca, A. & Thierry, F. ( 2003; ). Transcription-independent triggering of the extrinsic pathway of apoptosis by human papillomavirus 18 E2 protein. Oncogene 22, 168–175.[CrossRef]
    [Google Scholar]
  4. Desaintes, C., Demeret, C., Goyat, S., Yaniv, M. & Thierry, F. ( 1997; ). Expression of papillomavirus E2 protein in HeLa cells leads to apoptosis. EMBO J 16, 504–514.[CrossRef]
    [Google Scholar]
  5. Dev, K. K. ( 2004; ). Making protein interactions druggable: targeting PDZ domains. Nat Rev Drug Discov 3, 1047–1056.[CrossRef]
    [Google Scholar]
  6. Foster, S. A., Demers, G. W., Etscheid, B. G. & Galloway, D. A. ( 1994; ). The ability of human papillomavirus E6 proteins to target p53 for degradation in vivo correlates with their ability to abrogate actinomycin D-induced growth arrest. J Virol 68, 5698–5705.
    [Google Scholar]
  7. Francis, D. A., Schmid, S. I. & Howley, P. M. ( 2000; ). Repression of the integrated papillomavirus E6/E7 promoter is required for growth suppression of cervical cancer cells. J Virol 74, 2679–2686.[CrossRef]
    [Google Scholar]
  8. Gewin, L., Myers, H., Kiyono, T. & Galloway, D. A. ( 2004; ). Identification of a novel telomerase repressor that interacts with the human papillomavirus type-16 E6/E6-AP complex. Genes Dev 18, 2269–2282.[CrossRef]
    [Google Scholar]
  9. Goodwin, E. C. & DiMaio, D. ( 2000; ). Repression of human papillomavirus oncogenes in HeLa cervical carcinoma cells causes an orderly reactivation of dormant tumor suppressor pathways. Proc Natl Acad Sci U S A 97, 12513–12518.[CrossRef]
    [Google Scholar]
  10. Goodwin, E. C., Naeger, L. K., Breiding, D. E., Androphy, E. J. & DiMaio, D. ( 1998; ). Transactivation-competent bovine papillomavirus E2 protein is specifically required for efficient repression of human papillomavirus oncogene expression and for acute growth inhibition of cervical carcinoma cell lines. J Virol 72, 3925–3934.
    [Google Scholar]
  11. Grm, H. S. & Banks, L. ( 2004; ). Degradation of hDlg and MAGIs by human papillomavirus E6 is E6-AP-independent. J Gen Virol 85, 2815–2819.[CrossRef]
    [Google Scholar]
  12. Hampson, L., Li, C., Oliver, A. W., Kitchener, H. C. & Hampson, I. N. ( 2004; ). The PDZ protein TIP-1 is a gain of function target of the HPV16 E6 oncoprotein. Int J Oncol 25, 1249–1256.
    [Google Scholar]
  13. Hung, A. Y. & Sheng, M. ( 2002; ). PDZ domains: structural modules for protein complex assembly. J Biol Chem 277, 5699–5702.[CrossRef]
    [Google Scholar]
  14. Iftner, T., Bierfelder, S., Csapo, Z. & Pfister, H. ( 1988; ). Involvement of human papillomavirus type 8 genes E6 and E7 in transformation and replication. J Virol 62, 3655–3661.
    [Google Scholar]
  15. Jing, M., Bohl, J., Brimer, N., Kinter, M. & Vande Pol, S. B. ( 2007; ). Degradation of tyrosine phosphatase PTPN3 (PTPH1) by association with oncogenic human papillomavirus E6 proteins. J Virol 81, 2231–2239.[CrossRef]
    [Google Scholar]
  16. Kiyono, T., Hiraiwa, A. & Ishibashi, M. ( 1992; ). Differences in transforming activity and coded amino acid sequences among E6 genes of several papillomaviruses associated with epidermodysplasia verruciformis. Virology 186, 628–639.[CrossRef]
    [Google Scholar]
  17. Kiyono, T., Hiraiwa, A., Fujita, M., Hayashi, Y., Akiyama, T. & Ishibashi, M. ( 1997; ). Binding of high-risk human papillomavirus E6 oncoproteins to the human homologue of the Drosophila disc large tumor suppressor protein. Proc Natl Acad Sci U S A 94, 11612–11616.[CrossRef]
    [Google Scholar]
  18. Kiyono, T., Foster, S. A., Koop, J. I., McDougall, J.K., Galloway, D. A. & Klingelhutz, A. J. ( 1998; ). Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 396, 84–88.[CrossRef]
    [Google Scholar]
  19. Klingelhutz, A. J., Foster, S. A. & McDougall, J. K. ( 1996; ). Telomerase activation by the E6 gene product of human papillomavirus type 16. Nature 380, 79–81.[CrossRef]
    [Google Scholar]
  20. Kuballa, P., Matentzoglu, K. & Scheffner, M. ( 2007; ). The role of the ubiquitin ligase E6-AP in human papillomavirus E6-mediated degradation of PDZ domain containing proteins. J Biol Chem 282, 65–71.[CrossRef]
    [Google Scholar]
  21. Liu, Y., Chen, J. J., Gao, Q., Dalal, S., Hong, Y., Mansur, C. P., Band, V. & Androphy, E. J. ( 1999; ). Multiple functions of human papillomavirus type 16 E6 contribute to the immortalization of mammary epithelial cells. J Virol 73, 7297–7307.
    [Google Scholar]
  22. Longworth, M. S. & Laimins, L. A. ( 2004; ). Pathogenesis of human papillomaviruses in differentiating epithelia. Microbiol Mol Biol Rev 68, 362–372.[CrossRef]
    [Google Scholar]
  23. Mantovani, F. & Banks, L. ( 2001; ). The human papillomavirus E6 protein and its contribution to malignant progression. Oncogene 20, 7874–7887.[CrossRef]
    [Google Scholar]
  24. Massimi, P., Gammoh, N., Thomas, M. & Banks, L. ( 2004; ). HPV E6 specifically targets different cellular pools of its PDZ domain-containing tumour suppressor substrates for proteasome-mediated degradation. Oncogene 23, 8033–8039.[CrossRef]
    [Google Scholar]
  25. Müller, A., Ritzkowsky, A. & Steger, G. ( 2002; ). Cooperative activation of human papillomavirus type 8 gene expression by the E2 protein and the cellular coactivator p300. J Virol 76, 11042–11053.[CrossRef]
    [Google Scholar]
  26. Müller-Schiffmann, A., Beckmann, J. & Steger, G. ( 2006; ). The E6 protein of the cutaneous human papillomavirus type 8 can stimulate the viral early and late promoters by distinct mechanisms. J Virol 80, 8718–8728.[CrossRef]
    [Google Scholar]
  27. Münger, K., Baldwin, A., Edwards, K. M., Hayakawa, H., Nguyen, C. L., Owens, M., Grace, M. & Huh, K. ( 2004; ). Mechanisms of human papillomavirus-induced oncogenesis. J Virol 78, 11451–11460.[CrossRef]
    [Google Scholar]
  28. Munoz, N. ( 2000; ). Human papillomavirus and cancer: the epidemiological evidence. J Clin Virol 19, 1–5.[CrossRef]
    [Google Scholar]
  29. Nakagawa, S. & Huibregtse, J. M. ( 2000; ). Human scribble (Vartul) is targeted for ubiquitin-mediated degradation by the high-risk papillomavirus E6 proteins and the E6AP ubiquitin-protein ligase. Mol Cell Biol 20, 8244–8253.[CrossRef]
    [Google Scholar]
  30. Nguyen, M. L., Nguyen, M. M., Lee, D., Griep, A. E. & Lambert, P. F. ( 2003; ). The PDZ ligand domain of the human papillomavirus type 16 E6 protein is required for E6's induction of epithelial hyperplasia in vivo. J Virol 77, 6957–6964.[CrossRef]
    [Google Scholar]
  31. Nishimura, A., Ono, T., Ishimoto, A., Dowhanick, J. J., Frizell, M. A., Howley, P. M. & Sakai, H. ( 2000; ). Mechanism of human papillomavirus E2-mediated repression of viral oncogene expression and cervical cancer cell growth inhibition. J Virol 74, 3752–3760.[CrossRef]
    [Google Scholar]
  32. Nomine, Y., Charbonnier, S., Miguet, L., Potier, N., Van Dorsselaer, A., Atkinson, R. A., Trave, G. & Kieffer, B. ( 2005; ). 1H and 15N resonance assignment, secondary structure and dynamic behaviour of the C-terminal domain of human papillomavirus oncoprotein E6. J Biomol NMR 31, 129–141.[CrossRef]
    [Google Scholar]
  33. Nomine, Y., Masson, M., Charbonnier, S., Zanier, K., Ristriani, T., Deryckere, F., Sibler, A. P., Desplancq, D., Atkinson, R. A. & other authors ( 2006; ). Structural and functional analysis of E6 oncoprotein: insights in the molecular pathways of human papillomavirus-mediated pathogenesis. Mol Cell 21, 665–678.[CrossRef]
    [Google Scholar]
  34. Nourry, C., Grant, S. G. & Borg, J. P. ( 2003; ). PDZ domain proteins: plug and play!. Sci STKE 2003, RE7
    [Google Scholar]
  35. Ostman, A., Hellberg, C. & Bohmer, F. D. ( 2006; ). Protein-tyrosine phosphatases and cancer. Nat Rev Cancer 6, 307–320.[CrossRef]
    [Google Scholar]
  36. Pett, M. R., Alazawi, W. O., Roberts, I., Dowen, S., Smith, D. I., Stanley, M. A. & Coleman, N. ( 2004; ). Acquisition of high-level chromosomal instability is associated with integration of human papillomavirus type 16 in cervical keratinocytes. Cancer Res 64, 1359–1368.[CrossRef]
    [Google Scholar]
  37. Pett, M. R., Herdman, M. T., Palmer, R. D., Yeo, G. S., Shivji, M. K., Stanley, M. A. & Coleman, N. ( 2006; ). Selection of cervical keratinocytes containing integrated HPV16 associates with episome loss and an endogenous antiviral response. Proc Natl Acad Sci U S A 103, 3822–3827.[CrossRef]
    [Google Scholar]
  38. Pim, D., Thomas, M., Javier, R., Gardiol, D. & Banks, L. ( 2000; ). HPV E6 targeted degradation of the discs large protein: evidence for the involvement of a novel ubiquitin ligase. Oncogene 19, 719–725.[CrossRef]
    [Google Scholar]
  39. Pim, D., Thomas, M. & Banks, L. ( 2002; ). Chimaeric HPV E6 proteins allow dissection of the proteolytic pathways regulating different E6 cellular target proteins. Oncogene 21, 8140–8148.[CrossRef]
    [Google Scholar]
  40. Purdie, K. J., Sexton, C. J., Proby, C. M., Glover, M. T., Williams, A. T., Stables, J. N. & Leigh, I. M. ( 1993; ). Malignant transformation of cutaneous lesions in renal allograft patients: a role for human papillomavirus. Cancer Res 53, 5328–5333.
    [Google Scholar]
  41. Rehtanz, M., Schmidt, H.-M., Warthorst, U. & Steger, G. ( 2004; ). Direct interaction between nucleosome assembly protein-1 and the papillomavirus E2 proteins involved in activation of transcription. Mol Cell Biol 24, 2153–2168.[CrossRef]
    [Google Scholar]
  42. Scheffner, M. & Whitaker, N. J. ( 2003; ). Human papillomavirus-induced carcinogenesis and the ubiquitin-proteasome system. Semin Cancer Biol 13, 59–67.[CrossRef]
    [Google Scholar]
  43. Simonson, S. J. S., Difilippantinio, M. J. & Lambert, P. F. ( 2005; ). Two distinct activities contribute to human papillomavirus 16 E6's oncogenic potential. Cancer Res 65, 8266–8273.[CrossRef]
    [Google Scholar]
  44. Songyang, Z., Fanning, A. S., Fu, C., Xu, J., Marfatia, S. M., Chishti, A. H., Crompton, A., Chan, A. C., Anderson, J. M. & Cantley, L. C. ( 1997; ). Recognition of unique carboxyl-terminal motifs by distinct PDZ domains. Science 275, 73–77.[CrossRef]
    [Google Scholar]
  45. Steger, G. & Pfister, H. ( 1992; ). In vitro expressed HPV 8 E6 protein does not bind p53. Arch Virol 125, 355–360.[CrossRef]
    [Google Scholar]
  46. Thierry, F. & Yaniv, M. ( 1987; ). The BPV1 E2 trans-acting protein can be either a repressor or activator of the HPV18 regulatory region. EMBO J 6, 3391–3397.
    [Google Scholar]
  47. Thomas, M., Glaunsinger, B., Pim, D., Javier, R. & Banks, L. ( 2001; ). HPV16 E6 and MAGUK protein interactions: determination of the molecular basis for specific protein recognition and degradation. Oncogene 20, 5431–5439.[CrossRef]
    [Google Scholar]
  48. Wang, Z., Shen, D., Parsons, D. W., Bardelli, A., Sager, J., Szabo, S., Ptak, J., Silliman, N., Peters, B. A. & other authors ( 2004; ). Mutational analysis of the tyrosine phosphatome in colorectal cancers. Science 304, 1164–1166.[CrossRef]
    [Google Scholar]
  49. Watson, R. A., Thomas, M., Banks, L. & Roberts, S. ( 2003; ). Activity of the human papillomavirus E6 PDZ-binding motif correlates with enhanced morphological transformation of immortalized human keratinocytes. J Cell Sci 116, 4925–4935.[CrossRef]
    [Google Scholar]
  50. Yang, Q. & Tonks, N. K. ( 1991; ). Isolation of a cDNA clone encoding a human protein-tyrosine phosphatase with homology to the cytoskeletal-associated proteins band 4.1, ezrin, and talin. Proc Natl Acad Sci U S A 88, 5949–5953.[CrossRef]
    [Google Scholar]
  51. Zanier, K., Charbonnier, S., Baltzinger, M., Nomine, Y., Altschuh, D. & Trave, G. ( 2005; ). Kinetic analysis of the interactions of human papillomavirus E6 oncoproteins with the ubiquitin ligase E6AP using surface plasmon resonance. J Mol Biol 349, 401–412.[CrossRef]
    [Google Scholar]
  52. Zhang, S.-H., Eckberg, W. R., Yang, Q., Samatar, A. A. & Tonks, N. K. ( 1995; ). Biochemical characterization of human band 4.1-related protein-tyrosine phosphatase, PTPH1. J Biol Chem 270, 20067–20072.[CrossRef]
    [Google Scholar]
  53. Zhang, S.-H., Kobayashi, R., Graves, P. R., Piwnica-Worms, H. & Tonks, N. K. ( 1997; ). Serine phosphorylation-dependent association of the band 4.1-related protein-tyrosine phosphatase PTPH1 with 14-3-3β protein. J Biol Chem 272, 27281–27287.[CrossRef]
    [Google Scholar]
  54. Zhang, S.-H., Liu, J., Kobayashi, R. & Tonks, N. K. ( 1999; ). Identification of cell cycle regulator VCP (p97/CDC48) as a substrate of band 4.1-related protein-tyrosine phosphatase PTPH1. J Biol Chem 274, 17806–17812.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83123-0
Loading
/content/journal/jgv/10.1099/vir.0.83123-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error