1887

Abstract

The human immunodeficiency virus type 1 (HIV-1) vpu protein increases the release of virus particles from infected cells. Mutations that abrogate vpu function have a profound effect on HIV-1 replication in primary macrophage cultures. About 1.24 % of primary isolates in the HIV databases have start-codon mutations. In addition, the envelope of the AD8 isolate was reported to compensate for the lack of vpu, whilst the YU-2 virus (cloned directly from the brain tissue of an infected individual) is macrophage-tropic, despite having a start-codon mutation. These observations raise the possibility that envelopes evolve to compensate for the loss of vpu function . Chimeric and replication-competent clones were constructed that contained the envelopes of SF162, AD8 or YU-2. Macrophages were infected with these chimeras and virus release was measured over time by a reverse transcriptase ELISA. It was found that vpu-deficient chimeras carrying AD8 and YU-2 envelopes were consistently released at lower levels than their wild-type (wt) vpu counterparts, indicating that these envelopes did not compensate for the lack of vpu. Non-chimeric and AD8 and YU-2 followed similar patterns, although replication by vpu-deficient AD8 was variable, with virion release reaching 60 % of that recorded for AD8 with a wt . In summary, no evidence was found that the AD8 or YU-2 envelopes can compensate for the lack of vpu for replication in macrophages.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83120-0
2007-10-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/10/2780.html?itemId=/content/journal/jgv/10.1099/vir.0.83120-0&mimeType=html&fmt=ahah

References

  1. Abada, P., Noble, B. & Cannon, P. M. ( 2005; ). Functional domains within the human immunodeficiency virus type 2 envelope protein required to enhance virus production. J Virol 79, 3627–3638.[CrossRef]
    [Google Scholar]
  2. Adachi, A., Miyaura, M., Sakurai, A., Yoshida, A., Koyama, A. H. & Fujita, M. ( 2001; ). Growth characteristics of SHIV without the vpu gene. Int J Mol Med 8, 641–644.
    [Google Scholar]
  3. Balliet, J. W., Kolson, D. L., Eiger, G., Kim, F. M., McGann, K. A., Srinivasan, A. & Collman, R. ( 1994; ). Distinct effects in primary macrophages and lymphocytes of the human immunodeficiency virus type 1 accessory genes vpr, vpu, and nef: mutational analysis of a primary HIV-1 isolate. Virology 200, 623–631.[CrossRef]
    [Google Scholar]
  4. Bannert, N., Schenten, D., Craig, S. & Sodroski, J. ( 2000; ). The level of CD4 expression limits infection of primary rhesus monkey macrophages by a T-tropic simian immunodeficiency virus and macrophagetropic human immunodeficiency viruses. J Virol 74, 10984–10993.[CrossRef]
    [Google Scholar]
  5. Besnard-Guerin, C., Belaidouni, N., Lassot, I., Segeral, E., Jobart, A., Marchal, C. & Benarous, R. ( 2004; ). HIV-1 Vpu sequesters β-transducin repeat-containing protein (βTrCP) in the cytoplasm and provokes the accumulation of β-catenin and other SCF βTrCP substrates. J Biol Chem 279, 788–795.[CrossRef]
    [Google Scholar]
  6. Bour, S. & Strebel, K. ( 1996; ). The human immunodeficiency virus (HIV) type 2 envelope protein is a functional complement to HIV type 1 Vpu that enhances particle release of heterologous retroviruses. J Virol 70, 8285–8300.
    [Google Scholar]
  7. Bour, S., Schubert, U. & Strebel, K. ( 1995; ). The human immunodeficiency virus type 1 Vpu protein specifically binds to the cytoplasmic domain of CD4: implications for the mechanism of degradation. J Virol 69, 1510–1520.
    [Google Scholar]
  8. Bour, S., Schubert, U., Peden, K. & Strebel, K. ( 1996; ). The envelope glycoprotein of human immunodeficiency virus type 2 enhances viral particle release: a Vpu-like factor? J Virol 70, 820–829.
    [Google Scholar]
  9. Brown, A., Moghaddam, S., Kawano, T. & Cheng-Mayer, C. ( 2004; ). Multiple human immunodeficiency virus type 1 Nef functions contribute to efficient replication in primary human macrophages. J Gen Virol 85, 1463–1469.[CrossRef]
    [Google Scholar]
  10. Callahan, M. A., Handley, M. A., Lee, Y. H., Talbot, K. J., Harper, J. W. & Panganiban, A. T. ( 1998; ). Functional interaction of human immunodeficiency virus type 1 Vpu and Gag with a novel member of the tetratricopeptide repeat protein family. J Virol 72, 5189–5197.
    [Google Scholar]
  11. Cheng-Mayer, C., Quiroga, M., Tung, J. W., Dina, D. & Levy, J. A. ( 1990; ). Viral determinants of human immunodeficiency virus type 1 T-cell or macrophage tropism, cytopathogenicity, and CD4 antigen modulation. J Virol 64, 4390–4398.
    [Google Scholar]
  12. Cohen, E. A., Terwilliger, E. F., Sodroski, J. G. & Haseltine, W. A. ( 1988; ). Identification of a protein encoded by the vpu gene of HIV-1. Nature 334, 532–534.[CrossRef]
    [Google Scholar]
  13. Dejucq, N., Simmons, G. & Clapham, P. R. ( 2000; ). T-cell line adaptation of human immunodeficiency virus type 1 strain SF162: effects on envelope, vpu and macrophage-tropism. J Gen Virol 81, 2899–2904.
    [Google Scholar]
  14. DuBridge, R. B., Tang, P., Hsia, H. C., Leong, P. M., Miller, J. H. & Calos, M. P. ( 1987; ). Analysis of mutation in human cells by using an Epstein–Barr virus shuttle system. Mol Cell Biol 7, 379–387.
    [Google Scholar]
  15. Ewart, G. D., Sutherland, T., Gage, P. W. & Cox, G. B. ( 1996; ). The Vpu protein of human immunodeficiency virus type 1 forms cation- selective ion channels. J Virol 70, 7108–7115.
    [Google Scholar]
  16. Fujita, K., Omura, S. & Silver, J. ( 1997; ). Rapid degradation of CD4 in cells expressing human immunodeficiency virus type 1 Env and Vpu is blocked by proteasome inhibitors. J Gen Virol 78, 619–625.
    [Google Scholar]
  17. Gendelman, H. E., Orenstein, J. M., Martin, M. A., Ferrua, C., Mitra, R., Phipps, T., Wahl, L. A., Lane, H. C., Fauci, A. S. & Burke, D. S. ( 1988; ). Efficient isolation and propagation of human immunodeficiency virus on recombinant colony-stimulating factor 1-treated monocytes. J Exp Med 167, 1428–1441.[CrossRef]
    [Google Scholar]
  18. Greenberg, M. E., Bronson, S., Lock, M., Neumann, M., Pavlakis, G. N. & Skowronski, J. ( 1997; ). Co-localization of HIV-1 Nef with the AP-2 adaptor protein complex correlates with Nef-induced CD4 down-regulation. EMBO J 16, 6964–6976.[CrossRef]
    [Google Scholar]
  19. Handley, M. A., Paddock, S., Dall, A. & Panganiban, A. T. ( 2001; ). Association of Vpu-binding protein with microtubules and Vpu-dependent redistribution of HIV-1 Gag protein. Virology 291, 198–207.[CrossRef]
    [Google Scholar]
  20. Hout, D. R., Gomez, L. M., Pacyniak, E., Miller, J. M., Hill, M. S. & Stephens, E. B. ( 2006; ). A single amino acid substitution within the transmembrane domain of the human immunodeficiency virus type 1 Vpu protein renders simian-human immunodeficiency virus (SHIVKU-1bMC33) susceptible to rimantadine. Virology 348, 449–461.[CrossRef]
    [Google Scholar]
  21. Hsu, K., Seharaseyon, J., Dong, P., Bour, S. & Marban, E. ( 2004; ). Mutual functional destruction of HIV-1 Vpu and host TASK-1 channel. Mol Cell 14, 259–267.[CrossRef]
    [Google Scholar]
  22. Iida, S., Fukumori, T., Oshima, Y., Akari, H., Koyama, A. H. & Adachi, A. ( 1999; ). Compatibility of Vpu-like activity in the four groups of primate immunodeficiency viruses. Virus Genes 18, 183–187.[CrossRef]
    [Google Scholar]
  23. Kawamura, M., Ishizaki, T., Ishimoto, A., Shioda, T., Kitamura, T. & Adachi, A. ( 1994; ). Growth ability of human immunodeficiency virus type 1 auxiliary gene mutants in primary blood macrophage cultures. J Gen Virol 75, 2427–2431.[CrossRef]
    [Google Scholar]
  24. Kimura, T., Nishikawa, M. & Ohyama, A. ( 1994; ). Intracellular membrane traffic of human immunodeficiency virus type 1 envelope glycoproteins: vpu liberates Golgi-targeted gp160 from CD4-dependent retention in the endoplasmic reticulum. J Biochem (Tokyo) 115, 1010–1020.
    [Google Scholar]
  25. Lee, B., Sharron, M., Montaner, L. J., Weissman, D. & Doms, R. W. ( 1999; ). Quantification of CD4, CCR5, and CXCR4 levels on lymphocyte subsets, dendritic cells, and differentially conditioned monocyte-derived macrophages. Proc Natl Acad Sci U S A 96, 5215–5220.[CrossRef]
    [Google Scholar]
  26. Lenburg, M. E. & Landau, N. R. ( 1993; ). Vpu-induced degradation of CD4: requirement for specific amino acid residues in the cytoplasmic domain of CD4. J Virol 67, 7238–7245.
    [Google Scholar]
  27. Li, Y., Kappes, J. C., Conway, J. A., Price, R. W., Shaw, G. M. & Hahn, B. H. ( 1991; ). Molecular characterization of human immunodeficiency virus type 1 cloned directly from uncultured human brain tissue: identification of replication-competent and -defective viral genomes. J Virol 65, 3973–3985.
    [Google Scholar]
  28. Lindwasser, O. W., Chaudhuri, R. & Bonifacino, J. S. ( 2007; ). Mechanisms of CD4 downregulation by the Nef and Vpu proteins of primate immunodeficiency viruses. Curr Mol Med 7, 171–184.[CrossRef]
    [Google Scholar]
  29. Margottin, F., Bour, S. P., Durand, H., Selig, L., Benichou, S., Richard, V., Thomas, D., Strebel, K. & Benarous, R. ( 1998; ). A novel human WD protein, h-βTrCp, that interacts with HIV-1 Vpu connects CD4 to the ER degradation pathway through an F-box motif. Mol Cell 1, 565–574.[CrossRef]
    [Google Scholar]
  30. Mori, K., Ringler, D. J. & Desrosiers, R. C. ( 1993; ). Restricted replication of simian immunodeficiency virus strain 239 in macrophages is determined by env but is not due to restricted entry. J Virol 67, 2807–2814.
    [Google Scholar]
  31. Neil, S. J., Eastman, S. W., Jouvenet, N. & Bieniasz, P. D. ( 2006; ). HIV-1 Vpu promotes release and prevents endocytosis of nascent retrovirus particles from the plasma membrane. PLoS Pathog 2, e39 [CrossRef]
    [Google Scholar]
  32. Noble, B., Abada, P., Nunez-Iglesias, J. & Cannon, P. M. ( 2006; ). Recruitment of the adaptor protein 2 complex by the human immunodeficiency virus type 2 envelope protein is necessary for high levels of virus release. J Virol 80, 2924–2932.[CrossRef]
    [Google Scholar]
  33. O'Doherty, U., Swiggard, W. J. & Malim, M. H. ( 2000; ). Human immunodeficiency virus type 1 spinoculation enhances infection through virus binding. J Virol 74, 10074–10080.[CrossRef]
    [Google Scholar]
  34. Pacyniak, E., Gomez, M. L., Gomez, L. M., Mulcahy, E. R., Jackson, M., Hout, D. R., Wisdom, B. J. & Stephens, E. B. ( 2005; ). Identification of a region within the cytoplasmic domain of the subtype B Vpu protein of human immunodeficiency virus type 1 (HIV-1) that is responsible for retention in the Golgi complex and its absence in the Vpu protein from a subtype C HIV-1. AIDS Res Hum Retroviruses 21, 379–394.[CrossRef]
    [Google Scholar]
  35. Pelchen-Matthews, A., Kramer, B. & Marsh, M. ( 2003; ). Infectious HIV-1 assembles in late endosomes in primary macrophages. J Cell Biol 162, 443–455.[CrossRef]
    [Google Scholar]
  36. Peters, P. J., Sullivan, W. M., Duenas-Decamp, M. J., Bhattacharya, J., Ankghuambom, C., Brown, R., Luzuriaga, K., Bell, J., Simmonds, P. & other authors ( 2006; ). Non-macrophage-tropic human immunodeficiency virus type 1 R5 envelopes predominate in blood, lymph nodes, and semen: implications for transmission and pathogenesis. J Virol 80, 6324–6332.[CrossRef]
    [Google Scholar]
  37. Piguet, V., Chen, Y. L., Mangasarian, A., Foti, M., Carpentier, J. L. & Trono, D. ( 1998; ). Mechanism of Nef-induced CD4 endocytosis: Nef connects CD4 with the mu chain of adaptor complexes. EMBO J 17, 2472–2481.[CrossRef]
    [Google Scholar]
  38. Piguet, V., Gu, F., Foti, M., Demaurex, N., Gruenberg, J., Carpentier, J. L. & Trono, D. ( 1999; ). Nef-induced CD4 degradation: a diacidic-based motif in Nef functions as a lysosomal targeting signal through the binding of β-COP in endosomes. Cell 97, 63–73.[CrossRef]
    [Google Scholar]
  39. Sakai, H., Tokunaga, K., Kawamura, M. & Adachi, A. ( 1995; ). Function of human immunodeficiency virus type 1 Vpu protein in various cell types. J Gen Virol 76, 2717–2722.[CrossRef]
    [Google Scholar]
  40. Schubert, U., Henklein, P., Boldyreff, B., Wingender, E., Strebel, K. & Porstmann, T. ( 1994; ). The human immunodeficiency virus type 1 encoded Vpu protein is phosphorylated by casein kinase-2 (CK-2) at positions Ser52 and Ser56 within a predicted α-helix-turn-α-helix-motif. J Mol Biol 236, 16–25.[CrossRef]
    [Google Scholar]
  41. Schubert, U., Clouse, K. A. & Strebel, K. ( 1995; ). Augmentation of virus secretion by the human immunodeficiency virus type 1 Vpu protein is cell type independent and occurs in cultured human primary macrophages and lymphocytes. J Virol 69, 7699–7711.
    [Google Scholar]
  42. Schubert, U., Bour, S., Ferrer-Montiel, A. V., Montal, M., Maldarell, F. & Strebel, K. ( 1996a; ). The two biological activities of human immunodeficiency virus type 1 Vpu protein involve two separable structural domains. J Virol 70, 809–819.
    [Google Scholar]
  43. Schubert, U., Ferrer-Montiel, A. V., Oblatt-Montal, M., Henklein, P., Strebel, K. & Montal, M. ( 1996b; ). Identification of an ion channel activity of the Vpu transmembrane domain and its involvement in the regulation of virus release from HIV-1-infected cells. FEBS Lett 398, 12–18.[CrossRef]
    [Google Scholar]
  44. Schubert, U., Anton, L. C., Bacik, I., Cox, J. H., Bour, S., Bennink, J. R., Orlowski, M., Strebel, K. & Yewdell, J. W. ( 1998; ). CD4 glycoprotein degradation induced by human immunodeficiency virus type 1 Vpu protein requires the function of proteasomes and the ubiquitin-conjugating pathway. J Virol 72, 2280–2288.
    [Google Scholar]
  45. Schubert, U., Bour, S., Willey, R. L. & Strebel, K. ( 1999; ). Regulation of virus release by the macrophage-tropic human immunodeficiency virus type 1 AD8 isolate is redundant and can be controlled by either Vpu or Env. J Virol 73, 887–896.
    [Google Scholar]
  46. Schwartz, S., Felber, B. K., Fenyo, E. M. & Pavlakis, G. N. ( 1990; ). Env and Vpu proteins of human immunodeficiency virus type 1 are produced from multiple bicistronic mRNAs. J Virol 64, 5448–5456.
    [Google Scholar]
  47. Schwartz, S., Felber, B. K. & Pavlakis, G. N. ( 1992; ). Mechanism of translation of monocistronic and multicistronic human immunodeficiency virus type 1 mRNAs. Mol Cell Biol 12, 207–219.
    [Google Scholar]
  48. Sharova, N., Swingler, C., Sharkey, M. & Stevenson, M. ( 2005; ). Macrophages archive HIV-1 virions for dissemination in trans. EMBO J 24, 2481–2489.[CrossRef]
    [Google Scholar]
  49. Simmons, G., McKnight, A., Takeuchi, Y., Hoshino, H. & Clapham, P. R. ( 1995; ). Cell-to-cell fusion, but not virus entry in macrophages by T-cell line tropic HIV-1 strains: a V3 loop-determined restriction. Virology 209, 696–700.[CrossRef]
    [Google Scholar]
  50. Simmons, G., Wilkinson, D., Reeves, J. D., Dittmar, M. T., Beddows, S., Weber, J., Carnegie, G., Desselberger, U., Gray, P. W. & other authors ( 1996; ). Primary, syncytium-inducing human immunodeficiency virus type 1 isolates are dual-tropic and most can use either Lestr or CCR5 as coreceptors for virus entry. J Virol 70, 8355–8360.
    [Google Scholar]
  51. Simmons, G., Reeves, J. D., McKnight, A., Dejucq, N., Hibbitts, S., Power, C. A., Aarons, E., Schols, D., Clercq, E. D. & other authors ( 1998; ). CXCR4 as a functional coreceptor for human immunodeficiency virus type 1 infection of primary macrophages. J Virol 72, 8453–8457.
    [Google Scholar]
  52. Soda, Y., Shimizu, N., Jinno, A., Liu, H. Y., Kanbe, K., Kitamura, T. & Hoshino, H. ( 1999; ). Establishment of a new system for determination of coreceptor usages of HIV based on the human glioma NP-2 cell line. Biochem Biophys Res Commun 258, 313–321.[CrossRef]
    [Google Scholar]
  53. Stephens, E. B., McCormick, C., Pacyniak, E., Griffin, D., Pinson, D. M., Sun, F., Nothnick, W., Wong, S. W., Gunderson, R. & other authors ( 2002; ). Deletion of the vpu sequences prior to the env in a simian-human immunodeficiency virus results in enhanced Env precursor synthesis but is less pathogenic for pig-tailed macaques. Virology 293, 252–261.[CrossRef]
    [Google Scholar]
  54. Swingler, S., Brichacek, B., Jacque, J. M., Ulich, C., Zhou, J. & Stevenson, M. ( 2003; ). HIV-1 Nef intersects the macrophage CD40L signalling pathway to promote resting-cell infection. Nature 424, 213–219.[CrossRef]
    [Google Scholar]
  55. Theodore, T. S., Englund, G., Buckler-White, A., Buckler, C. E., Martin, M. A. & Peden, K. W. ( 1996; ). Construction and characterization of a stable full-length macrophage-tropic HIV type 1 molecular clone that directs the production of high titers of progeny virions. AIDS Res Hum Retroviruses 12, 191–194.[CrossRef]
    [Google Scholar]
  56. Thomas, E. R., Dunfee, R. L., Stanton, J., Bogdan, D., Kunstman, K., Wolinsky, S. M. & Gabuzda, D. ( 2007; ). High frequency of defective vpu compared with tat and rev genes in brain from patients with HIV type 1-associated dementia. AIDS Res Hum Retroviruses 23, 575–580.[CrossRef]
    [Google Scholar]
  57. Varthakavi, V., Smith, R. M., Bour, S. P., Strebel, K. & Spearman, P. ( 2003; ). Viral protein U counteracts a human host cell restriction that inhibits HIV-1 particle production. Proc Natl Acad Sci U S A 100, 15154–15159.[CrossRef]
    [Google Scholar]
  58. Varthakavi, V., Smith, R. M., Martin, K. L., Derdowski, A., Lapierre, L. A., Goldenring, J. R. & Spearman, P. ( 2006; ). The pericentriolar recycling endosome plays a key role in Vpu-mediated enhancement of HIV-1 particle release. Traffic 7, 298–307.[CrossRef]
    [Google Scholar]
  59. Vincent, M. J., Raja, N. U. & Jabbar, M. A. ( 1993; ). Human immunodeficiency virus type 1 Vpu protein induces degradation of chimeric envelope glycoproteins bearing the cytoplasmic and anchor domains of CD4: role of the cytoplasmic domain in Vpu-induced degradation in the endoplasmic reticulum. J Virol 67, 5538–5549.
    [Google Scholar]
  60. Westervelt, P., Trowbridge, D. B., Epstein, L. G., Blumberg, B. M., Li, Y., Hahn, B. H., Shaw, G. M., Price, R. W. & Ratner, L. ( 1992; ). Macrophage tropism determinants of human immunodeficiency virus type 1 in vivo. J Virol 66, 2577–2582.
    [Google Scholar]
  61. Willey, R. L., Maldarelli, F., Martin, M. A. & Strebel, K. ( 1992; ). Human immunodeficiency virus type 1 Vpu protein regulates the formation of intracellular gp160–CD4 complexes. J Virol 66, 226–234.
    [Google Scholar]
  62. Yao, X. J., Friborg, J., Checroune, F., Gratton, S., Boisvert, F., Sekaly, R. P. & Cohen, E. A. ( 1995; ). Degradation of CD4 induced by human immunodeficiency virus type 1 Vpu protein: a predicted alpha-helix structure in the proximal cytoplasmic region of CD4 contributes to Vpu sensitivity. Virology 209, 615–623.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83120-0
Loading
/content/journal/jgv/10.1099/vir.0.83120-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error