1887

Abstract

Viral vectors have been shown to induce protective CD8 T-cell populations in animal models, but significant obstacles remain to their widespread use for human vaccination. One such obstacle is immunodominance, where the CD8 T-cell response to a vector can suppress the desired CD8 T-cell response to a recombinantly encoded antigen. To overcome this hurdle, we broadly reduced vector-specific gene expression. We treated a recombinant vaccinia virus, encoding antigen as a minimal peptide determinant (8–10 aa), with psoralen and short-wave UV light. The resulting virus induced 66 % fewer vector-specific immunodominant CD8 T cells, allowing the induction of an increased number of CD8 T cells specific for the recombinant antigen.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83107-0
2007-09-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/9/2378.html?itemId=/content/journal/jgv/10.1099/vir.0.83107-0&mimeType=html&fmt=ahah

References

  1. Anton L. C., Schubert U., Bacik I., Princiotta M. F., Wearsch P. A., Gibbs J., Day P. M., Realini C., Rechsteiner M. C. other authors 1999; Intracellular localization of proteasomal degradation of a viral antigen. J Cell Biol 146:113–124 [CrossRef]
    [Google Scholar]
  2. Blasco R., Cole N. B., Moss B. 1991; Sequence analysis, expression, and deletion of a vaccinia virus gene encoding a homolog of profilin, a eukaryotic actin-binding protein. J Virol 65:4598–4608
    [Google Scholar]
  3. Brockstedt D. G., Bahjat K. S., Giedlin M. A., Liu W., Leong M., Luckett W., Gao Y., Schnupf P., Kapadia D. other authors 2005; Killed but metabolically active microbes: a new vaccine paradigm for eliciting effector T-cell responses and protective immunity. Nat Med 11:853–860 [CrossRef]
    [Google Scholar]
  4. Bronte V., Carroll M. W., Goletz T. J., Wang M., Overwijk W. W., Marincola F., Rosenberg S. A., Moss B., Restifo N. P. 1997; Antigen expression by dendritic cells correlates with the therapeutic effectiveness of a model recombinant poxvirus tumor vaccine. Proc Natl Acad Sci U S A 94:3183–3188 [CrossRef]
    [Google Scholar]
  5. Buller R. M., Smith G. L., Cremer K., Notkins A. L., Moss B. 1985; Decreased virulence of recombinant vaccinia virus expression vectors is associated with a thymidine kinase-negative phenotype. Nature 317:813–815 [CrossRef]
    [Google Scholar]
  6. Chakrabarti S., Brechling K., Moss B. 1985; Vaccinia virus expression vector: coexpression of beta-galactosidase provides visual screening of recombinant virus plaques. Mol Cell Biol 5:3403–3409
    [Google Scholar]
  7. Clark R. H., Kenyon J. C., Bartlett N. W., Tscharke D. C., Smith G. L. 2006; Deletion of gene A41L enhances vaccinia virus immunogenicity and vaccine efficacy. J Gen Virol 87:29–38 [CrossRef]
    [Google Scholar]
  8. Coupar B. E., Andrew M. E., Both G. W., Boyle D. B. 1986; Temporal regulation of influenza hemagglutinin expression in vaccinia virus recombinants and effects on the immune response. Eur J Immunol 16:1479–1487 [CrossRef]
    [Google Scholar]
  9. Fremont D. H., Matsumara M., Stura E. A., Peterson P. A., Wilson I. A. 1992; Crystal structures of two viral peptides in complex with murine MHC class I H-2Kb. Science 257:919–926 [CrossRef]
    [Google Scholar]
  10. Gould K., Cossins J., Bastin J., Brownlee G. G., Townsend A. 1989; A 15 amino acid fragment of influenza nucleoprotein synthesized in the cytoplasm is presented to class I-restricted cytotoxic T lymphocytes. J Exp Med 170:1051–1056 [CrossRef]
    [Google Scholar]
  11. Hanson C. V., Riggs J. L., Lennette E. H. 1978; Photochemical inactivation of DNA and RNA viruses by psoralen derivatives. J Gen Virol 40:345–358 [CrossRef]
    [Google Scholar]
  12. Harrington L. E., Most Rv R., Whitton J. L., Ahmed R. 2002; Recombinant vaccinia virus-induced T-cell immunity: quantitation of the response to the virus vector and the foreign epitope. J Virol 76:3329–3337 [CrossRef]
    [Google Scholar]
  13. Jones-Trower A., Garcia A., Meseda C. A., He Y., Weiss C., Kumar A., Weir J. P., Merchlinsky M. 2005; Identification and preliminary characterization of vaccinia virus (Dryvax) antigens recognized by vaccinia immune globulin. Virology 343:128–140 [CrossRef]
    [Google Scholar]
  14. Lane J. M., Ruben F. L., Neff J. M., Millar J. D. 1969; Complications of smallpox vaccination, 1968. N Engl J Med 281:1201–1208 [CrossRef]
    [Google Scholar]
  15. Ljunggren H. G., Stam N. J., Ohlen C., Neefjes J. J., Hoglund P., Heemels M. T., Bastin J., Schumacher T. N., Townsend A. other authors 1990; Empty MHC class I molecules come out in the cold. Nature 346:476–480 [CrossRef]
    [Google Scholar]
  16. Malarkannan S., Mendoza L. M., Shastri N. 2001; Generation of antigen-specific, lacZ-inducible T-cell hybrids. Methods Mol Biol 156:265–272
    [Google Scholar]
  17. Oertli D., Marti W. R., Norton J. A., Tsung K. 1996; Non-replicating recombinant vaccinia virus encoding murine B-7 molecules elicits effective costimulation of naive CD4+ splenocytes in vitro. J Gen Virol 77:3121–3125 [CrossRef]
    [Google Scholar]
  18. Porgador A., Yewdell J. W., Deng Y., Bennink J. R., Germain R. N. 1997; Localization, quantitation, and in situ detection of specific peptide-MHC class I complexes using a monoclonal antibody. Immunity 6:715–726 [CrossRef]
    [Google Scholar]
  19. Pretell J., Greenfield R. S., Tevethia S. S. 1979; Biology of simian virus 40 (SV40) transplantation antigen (TrAg). V. In vitro demonstration of SV40 TrAg in SV40 infected nonpermissive mouse cells by the lymphocyte mediated cytotoxicity assay. Virology 97:32–41 [CrossRef]
    [Google Scholar]
  20. Princiotta M. F., Finzi D., Qian S. B., Gibbs J., Schuchmann S., Buttgereit F., Bennink J. R., Yewdell J. W. 2003; Quantitating protein synthesis, degradation, and endogenous antigen processing. Immunity 18:343–354 [CrossRef]
    [Google Scholar]
  21. Restifo N. P., Bacik I., Irvine K. R., Yewdell J. W., McCabe B. J., Anderson R. W., Eisenlohr L. C., Rosenberg S. A., Bennink J. R. 1995; Antigen processing in vivo and the elicitation of primary CTL responses. J Immunol 154:4414–4422
    [Google Scholar]
  22. Sanderson S., Shastri N. 1994; LacZ inducible, antigen/MHC-specific T cell hybrids. Int Immunol 6:369–376 [CrossRef]
    [Google Scholar]
  23. Smith C. L., Mirza F., Pasquetto V., Tscharke D. C., Palmowski M. J., Dunbar P. R., Sette A., Harris A. L., Cerundolo V. 2005; Immunodominance of poxviral-specific CTL in a human trial of recombinant-modified vaccinia Ankara. J Immunol 175:8431–8437 [CrossRef]
    [Google Scholar]
  24. Staib C., Kisling S., Erfle V., Sutter G. 2005; Inactivation of the viral interleukin 1 β receptor improves CD8+ T-cell memory responses elicited upon immunization with modified vaccinia virus Ankara. J Gen Virol 86:1997–2006 [CrossRef]
    [Google Scholar]
  25. Stickl H., Hochstein-Mintzel V. 1971; Intracutaneous smallpox vaccination with a weak pathogenic vaccinia virus (“MVA virus”). Munch Med Wochenschr 113:1149–1153 (in German)
    [Google Scholar]
  26. Sutter G., Wyatt L. S., Foley P. L., Bennink J. R., Moss B. 1994; A recombinant vector derived from the host range-restricted and highly attenuated MVA strain of vaccinia virus stimulates protective immunity in mice to influenza virus. Vaccine 12:1032–1040 [CrossRef]
    [Google Scholar]
  27. Tanaka Y., Anderson R. W., Maloy W. L., Tevethia S. S. 1989; Localization of an immunorecessive epitope on SV40 antigen by H-2Db-restricted cytotoxic T-lymphocyte clones and a synthetic peptide. Virology 171:205–213 [CrossRef]
    [Google Scholar]
  28. Truckenmiller M. E., Norbury C. C. 2004; Viral vectors for inducing CD8+ T cell responses. Expert Opin Biol Ther 4:861–868 [CrossRef]
    [Google Scholar]
  29. Tscharke D. C., Reading P. C., Smith G. L. 2002; Dermal infection with vaccinia virus reveals roles for virus proteins not seen using other inoculation routes. J Gen Virol 83:1977–1986
    [Google Scholar]
  30. Tscharke D. C., Karupiah G., Zhou J., Palmore T., Irvine K. R., Haeryfar S. M., Williams S., Sidney J., Sette A. other authors 2005; Identification of poxvirus CD8+ T cell determinants to enable rational design and characterization of smallpox vaccines. J Exp Med 201:95–104 [CrossRef]
    [Google Scholar]
  31. Tsung K., Yim J. H., Marti W., Buller R. M. L., Norton J. A. 1996; Gene expression and cytopathic effect of vaccina virus inactivated by psoralen and long-wave UV light. J Virol 70:165–171
    [Google Scholar]
  32. Webby R. J., Andreansky S., Stambas J., Rehg J. E., Webster R. G., Doherty P. C., Turner S. J. 2003; Protection and compensation in the influenza virus-specific CD8+ T cell response. Proc Natl Acad Sci U S A 100:7235–7240 [CrossRef]
    [Google Scholar]
  33. Weidt G., Utermohlen O., Heukeshoven J., Lehmann-Grubbe F., Deppert W. 1998; Relationship among immunodominance of single CD8+ T cell epitopes, virus load, and kinetics of primary antiviral CTL response. J Immunol 160:2923–2931
    [Google Scholar]
  34. Yewdell J. W., Bennink J. R. 1999; Immunodominance in major histocompatibility complex class I-restricted T lymphocyte responses. Annu Rev Immunol 17:51–88 [CrossRef]
    [Google Scholar]
  35. Yewdell J. W., Bennink J. R., Smith G. L., Moss B. 1985; Influenza A virus nucleoprotein is a major target antigen for cross- reactive anti-influenza A virus cytotoxic T lymphocytes. Proc Natl Acad Sci U S A 82:1785–1789 [CrossRef]
    [Google Scholar]
  36. Yewdell J. W., Bennink J. R., Mackett M., Lefrancois L., Lyles D. S., Moss B. 1986; Recognition of cloned vesicular stomatitis virus internal and external gene products by cytotoxic T lymphocytes. J Exp Med 163:1529–1538 [CrossRef]
    [Google Scholar]
  37. Zajac P., Oertli D., Spagnoli G. C., Noppen C., Schaefer C., Heberer M., Marti W. R. 1997; Generation of tumoricidal cytotoxic T lymphocytes from healthy donors after in vitro stimulation with a replication-incompetent vaccinia virus encoding MART-1/Melan-A 27–35 epitope. Int J Cancer 71:491–496 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83107-0
Loading
/content/journal/jgv/10.1099/vir.0.83107-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error