Skip to content
1887

Abstract

Viral vectors have been shown to induce protective CD8 T-cell populations in animal models, but significant obstacles remain to their widespread use for human vaccination. One such obstacle is immunodominance, where the CD8 T-cell response to a vector can suppress the desired CD8 T-cell response to a recombinantly encoded antigen. To overcome this hurdle, we broadly reduced vector-specific gene expression. We treated a recombinant vaccinia virus, encoding antigen as a minimal peptide determinant (8–10 aa), with psoralen and short-wave UV light. The resulting virus induced 66 % fewer vector-specific immunodominant CD8 T cells, allowing the induction of an increased number of CD8 T cells specific for the recombinant antigen.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83107-0
2007-09-01
2025-05-23
Loading full text...

Full text loading...

References

  1. Anton L. C., Schubert U., Bacik I., Princiotta M. F., Wearsch P. A., Gibbs J., Day P. M., Realini C., Rechsteiner M. C. other authors 1999; Intracellular localization of proteasomal degradation of a viral antigen. J Cell Biol 146:113–124 [CrossRef]
    [Google Scholar]
  2. Blasco R., Cole N. B., Moss B. 1991; Sequence analysis, expression, and deletion of a vaccinia virus gene encoding a homolog of profilin, a eukaryotic actin-binding protein. J Virol 65:4598–4608
    [Google Scholar]
  3. Brockstedt D. G., Bahjat K. S., Giedlin M. A., Liu W., Leong M., Luckett W., Gao Y., Schnupf P., Kapadia D. other authors 2005; Killed but metabolically active microbes: a new vaccine paradigm for eliciting effector T-cell responses and protective immunity. Nat Med 11:853–860 [CrossRef]
    [Google Scholar]
  4. Bronte V., Carroll M. W., Goletz T. J., Wang M., Overwijk W. W., Marincola F., Rosenberg S. A., Moss B., Restifo N. P. 1997; Antigen expression by dendritic cells correlates with the therapeutic effectiveness of a model recombinant poxvirus tumor vaccine. Proc Natl Acad Sci U S A 94:3183–3188 [CrossRef]
    [Google Scholar]
  5. Buller R. M., Smith G. L., Cremer K., Notkins A. L., Moss B. 1985; Decreased virulence of recombinant vaccinia virus expression vectors is associated with a thymidine kinase-negative phenotype. Nature 317:813–815 [CrossRef]
    [Google Scholar]
  6. Chakrabarti S., Brechling K., Moss B. 1985; Vaccinia virus expression vector: coexpression of beta-galactosidase provides visual screening of recombinant virus plaques. Mol Cell Biol 5:3403–3409
    [Google Scholar]
  7. Clark R. H., Kenyon J. C., Bartlett N. W., Tscharke D. C., Smith G. L. 2006; Deletion of gene A41L enhances vaccinia virus immunogenicity and vaccine efficacy. J Gen Virol 87:29–38 [CrossRef]
    [Google Scholar]
  8. Coupar B. E., Andrew M. E., Both G. W., Boyle D. B. 1986; Temporal regulation of influenza hemagglutinin expression in vaccinia virus recombinants and effects on the immune response. Eur J Immunol 16:1479–1487 [CrossRef]
    [Google Scholar]
  9. Fremont D. H., Matsumara M., Stura E. A., Peterson P. A., Wilson I. A. 1992; Crystal structures of two viral peptides in complex with murine MHC class I H-2Kb. Science 257:919–926 [CrossRef]
    [Google Scholar]
  10. Gould K., Cossins J., Bastin J., Brownlee G. G., Townsend A. 1989; A 15 amino acid fragment of influenza nucleoprotein synthesized in the cytoplasm is presented to class I-restricted cytotoxic T lymphocytes. J Exp Med 170:1051–1056 [CrossRef]
    [Google Scholar]
  11. Hanson C. V., Riggs J. L., Lennette E. H. 1978; Photochemical inactivation of DNA and RNA viruses by psoralen derivatives. J Gen Virol 40:345–358 [CrossRef]
    [Google Scholar]
  12. Harrington L. E., Most Rv R., Whitton J. L., Ahmed R. 2002; Recombinant vaccinia virus-induced T-cell immunity: quantitation of the response to the virus vector and the foreign epitope. J Virol 76:3329–3337 [CrossRef]
    [Google Scholar]
  13. Jones-Trower A., Garcia A., Meseda C. A., He Y., Weiss C., Kumar A., Weir J. P., Merchlinsky M. 2005; Identification and preliminary characterization of vaccinia virus (Dryvax) antigens recognized by vaccinia immune globulin. Virology 343:128–140 [CrossRef]
    [Google Scholar]
  14. Lane J. M., Ruben F. L., Neff J. M., Millar J. D. 1969; Complications of smallpox vaccination, 1968. N Engl J Med 281:1201–1208 [CrossRef]
    [Google Scholar]
  15. Ljunggren H. G., Stam N. J., Ohlen C., Neefjes J. J., Hoglund P., Heemels M. T., Bastin J., Schumacher T. N., Townsend A. other authors 1990; Empty MHC class I molecules come out in the cold. Nature 346:476–480 [CrossRef]
    [Google Scholar]
  16. Malarkannan S., Mendoza L. M., Shastri N. 2001; Generation of antigen-specific, lacZ-inducible T-cell hybrids. Methods Mol Biol 156:265–272
    [Google Scholar]
  17. Oertli D., Marti W. R., Norton J. A., Tsung K. 1996; Non-replicating recombinant vaccinia virus encoding murine B-7 molecules elicits effective costimulation of naive CD4+ splenocytes in vitro. J Gen Virol 77:3121–3125 [CrossRef]
    [Google Scholar]
  18. Porgador A., Yewdell J. W., Deng Y., Bennink J. R., Germain R. N. 1997; Localization, quantitation, and in situ detection of specific peptide-MHC class I complexes using a monoclonal antibody. Immunity 6:715–726 [CrossRef]
    [Google Scholar]
  19. Pretell J., Greenfield R. S., Tevethia S. S. 1979; Biology of simian virus 40 (SV40) transplantation antigen (TrAg). V. In vitro demonstration of SV40 TrAg in SV40 infected nonpermissive mouse cells by the lymphocyte mediated cytotoxicity assay. Virology 97:32–41 [CrossRef]
    [Google Scholar]
  20. Princiotta M. F., Finzi D., Qian S. B., Gibbs J., Schuchmann S., Buttgereit F., Bennink J. R., Yewdell J. W. 2003; Quantitating protein synthesis, degradation, and endogenous antigen processing. Immunity 18:343–354 [CrossRef]
    [Google Scholar]
  21. Restifo N. P., Bacik I., Irvine K. R., Yewdell J. W., McCabe B. J., Anderson R. W., Eisenlohr L. C., Rosenberg S. A., Bennink J. R. 1995; Antigen processing in vivo and the elicitation of primary CTL responses. J Immunol 154:4414–4422
    [Google Scholar]
  22. Sanderson S., Shastri N. 1994; LacZ inducible, antigen/MHC-specific T cell hybrids. Int Immunol 6:369–376 [CrossRef]
    [Google Scholar]
  23. Smith C. L., Mirza F., Pasquetto V., Tscharke D. C., Palmowski M. J., Dunbar P. R., Sette A., Harris A. L., Cerundolo V. 2005; Immunodominance of poxviral-specific CTL in a human trial of recombinant-modified vaccinia Ankara. J Immunol 175:8431–8437 [CrossRef]
    [Google Scholar]
  24. Staib C., Kisling S., Erfle V., Sutter G. 2005; Inactivation of the viral interleukin 1 β receptor improves CD8+ T-cell memory responses elicited upon immunization with modified vaccinia virus Ankara. J Gen Virol 86:1997–2006 [CrossRef]
    [Google Scholar]
  25. Stickl H., Hochstein-Mintzel V. 1971; Intracutaneous smallpox vaccination with a weak pathogenic vaccinia virus (“MVA virus”). Munch Med Wochenschr 113:1149–1153 (in German)
    [Google Scholar]
  26. Sutter G., Wyatt L. S., Foley P. L., Bennink J. R., Moss B. 1994; A recombinant vector derived from the host range-restricted and highly attenuated MVA strain of vaccinia virus stimulates protective immunity in mice to influenza virus. Vaccine 12:1032–1040 [CrossRef]
    [Google Scholar]
  27. Tanaka Y., Anderson R. W., Maloy W. L., Tevethia S. S. 1989; Localization of an immunorecessive epitope on SV40 antigen by H-2Db-restricted cytotoxic T-lymphocyte clones and a synthetic peptide. Virology 171:205–213 [CrossRef]
    [Google Scholar]
  28. Truckenmiller M. E., Norbury C. C. 2004; Viral vectors for inducing CD8+ T cell responses. Expert Opin Biol Ther 4:861–868 [CrossRef]
    [Google Scholar]
  29. Tscharke D. C., Reading P. C., Smith G. L. 2002; Dermal infection with vaccinia virus reveals roles for virus proteins not seen using other inoculation routes. J Gen Virol 83:1977–1986
    [Google Scholar]
  30. Tscharke D. C., Karupiah G., Zhou J., Palmore T., Irvine K. R., Haeryfar S. M., Williams S., Sidney J., Sette A. other authors 2005; Identification of poxvirus CD8+ T cell determinants to enable rational design and characterization of smallpox vaccines. J Exp Med 201:95–104 [CrossRef]
    [Google Scholar]
  31. Tsung K., Yim J. H., Marti W., Buller R. M. L., Norton J. A. 1996; Gene expression and cytopathic effect of vaccina virus inactivated by psoralen and long-wave UV light. J Virol 70:165–171
    [Google Scholar]
  32. Webby R. J., Andreansky S., Stambas J., Rehg J. E., Webster R. G., Doherty P. C., Turner S. J. 2003; Protection and compensation in the influenza virus-specific CD8+ T cell response. Proc Natl Acad Sci U S A 100:7235–7240 [CrossRef]
    [Google Scholar]
  33. Weidt G., Utermohlen O., Heukeshoven J., Lehmann-Grubbe F., Deppert W. 1998; Relationship among immunodominance of single CD8+ T cell epitopes, virus load, and kinetics of primary antiviral CTL response. J Immunol 160:2923–2931
    [Google Scholar]
  34. Yewdell J. W., Bennink J. R. 1999; Immunodominance in major histocompatibility complex class I-restricted T lymphocyte responses. Annu Rev Immunol 17:51–88 [CrossRef]
    [Google Scholar]
  35. Yewdell J. W., Bennink J. R., Smith G. L., Moss B. 1985; Influenza A virus nucleoprotein is a major target antigen for cross- reactive anti-influenza A virus cytotoxic T lymphocytes. Proc Natl Acad Sci U S A 82:1785–1789 [CrossRef]
    [Google Scholar]
  36. Yewdell J. W., Bennink J. R., Mackett M., Lefrancois L., Lyles D. S., Moss B. 1986; Recognition of cloned vesicular stomatitis virus internal and external gene products by cytotoxic T lymphocytes. J Exp Med 163:1529–1538 [CrossRef]
    [Google Scholar]
  37. Zajac P., Oertli D., Spagnoli G. C., Noppen C., Schaefer C., Heberer M., Marti W. R. 1997; Generation of tumoricidal cytotoxic T lymphocytes from healthy donors after in vitro stimulation with a replication-incompetent vaccinia virus encoding MART-1/Melan-A 27–35 epitope. Int J Cancer 71:491–496 [CrossRef]
    [Google Scholar]
/content/journal/jgv/10.1099/vir.0.83107-0
Loading
/content/journal/jgv/10.1099/vir.0.83107-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error