1887

Abstract

For the first time, homologous superinfection exclusion was documented for rubella virus (RUB) by using Vero cells harbouring persisting RUB replicons. Infection with wild-type RUB was reduced by tenfold, whereas Sindbis virus infection was unaffected. Replication following infection with packaged replicons and transfection with replicon transcripts was also restricted in these cells, indicating that restriction occurred after penetration and entry. Translation of such ‘supertransfecting’ replicon transcripts was not impaired, but no accumulation of supertransfecting replicon RNA could be detected. We tested the hypothesis favoured in the related alphaviruses that superinfection exclusion is mediated by cleavage of the incoming non-structural precursor by the pre-existing non-structural (NS) protease, resulting in an inhibition of minus-strand RNA synthesis. However, cleavage of a precursor translated from a supertransfecting replicon transcript with an NS protease catalytic-site mutation was not detected and the event in the replication cycle at which superinfection exclusion is executed remains to be elucidated.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83092-0
2007-10-01
2019-11-13
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/10/2769.html?itemId=/content/journal/jgv/10.1099/vir.0.83092-0&mimeType=html&fmt=ahah

References

  1. Abernathy, E. S., Wang, C. Y. & Frey, T. K. ( 1990; ). Effect of antiviral antibody on maintenance of long-term rubella virus persistent infection in Vero cells. J Virol 64, 5183–5187.
    [Google Scholar]
  2. Adams, R. H. & Brown, D. T. ( 1985; ). BHK cells expressing Sindbis virus-induced homologous interference allow the translation of nonstructural genes of superinfecting virus. J Virol 54, 351–357.
    [Google Scholar]
  3. Breiner, K. M., Schaller, H. & Knolle, P. A. ( 2001a; ). Endothelial cell-mediated uptake of a hepatitis B virus: a new concept of liver targeting of hepatotropic microorganisms. Hepatology 34, 803–808.[CrossRef]
    [Google Scholar]
  4. Breiner, K. M., Urban, S., Glass, B. & Schaller, H. ( 2001b; ). Envelope protein-mediated down-regulation of hepatitis B virus receptor in infected hepatocytes. J Virol 75, 143–150.[CrossRef]
    [Google Scholar]
  5. Carver, D. H., Marcus, P. I. & Seto, D. S. ( 1967; ). Intrinsic interference: a unique interference system used in assaying non-cytopathic viruses. Arch Gesamte Virusforsch 22, 55–60.[CrossRef]
    [Google Scholar]
  6. Chen, M. H. & Icenogle, J. P. ( 2004; ). Rubella virus capsid protein modulates viral genome replication and virus infectivity. J Virol 78, 4314–4322.[CrossRef]
    [Google Scholar]
  7. Desmyter, J., Melnick, J. L. & Rawls, W. E. ( 1968; ). Defectiveness of interferon production and of rubella virus interference in a line of African green monkey kidney cells (Vero). J Virol 2, 955–961.
    [Google Scholar]
  8. Fontana, J., Tzeng, W. P., Calderita, G., Fraile-Ramos, A., Frey, T. K. & Risco, C. ( 2007; ). Novel replication complex architecture in rubella replicon-transfected cells. Cell Microbiol 9, 875–890.[CrossRef]
    [Google Scholar]
  9. Forng, R. Y. & Frey, T. K. ( 1995; ). Identification of the rubella virus nonstructural proteins. Virology 206, 843–853.[CrossRef]
    [Google Scholar]
  10. Frey, T. K. ( 1994; ). Molecular biology of rubella virus. Adv Virus Res 44, 69–160.
    [Google Scholar]
  11. Geib, T., Sauder, C., Venturelli, S., Hassler, C., Staeheli, P. & Schwemmle, M. ( 2003; ). Selective virus resistance conferred by expression of Borna disease virus nucleocapsid components. J Virol 77, 4283–4290.[CrossRef]
    [Google Scholar]
  12. Igarashi, A., Koo, R. & Stollar, V. ( 1977; ). Evolution and properties of Aedes albopictus cell cultures persistently infected with sindbis virus. Virology 82, 69–83.[CrossRef]
    [Google Scholar]
  13. Karpf, A. R., Lenches, E., Strauss, E. G., Strauss, J. H. & Brown, D. T. ( 1997; ). Superinfection exclusion of alphaviruses in three mosquito cell lines persistently infected with Sindbis virus. J Virol 71, 7119–7123.
    [Google Scholar]
  14. Lee, Y. M., Tscherne, D. M., Yun, S. I., Frolov, I. & Rice, C. M. ( 2005; ). Dual mechanisms of pestiviral superinfection exclusion at entry and RNA replication. J Virol 79, 3231–3242.[CrossRef]
    [Google Scholar]
  15. Liang, Y. & Gillam, S. ( 2000; ). Mutational analysis of the rubella virus nonstructural polyprotein and its cleavage products in virus replication and RNA synthesis. J Virol 74, 5133–5141.[CrossRef]
    [Google Scholar]
  16. Liang, Y. & Gillam, S. ( 2001; ). Rubella virus RNA replication is cis-preferential and synthesis of negative- and positive-strand RNAs is regulated by the processing of nonstructural protein. Virology 282, 307–319.[CrossRef]
    [Google Scholar]
  17. Lohmann, V., Hoffmann, S., Herian, U., Penin, F. & Bartenschlager, R. ( 2003; ). Viral and cellular determinants of hepatitis C virus RNA replication in cell culture. J Virol 77, 3007–3019.[CrossRef]
    [Google Scholar]
  18. Magliano, D., Marshall, J. A., Bowden, D. S., Vardaxis, N., Meanger, J. & Lee, J. Y. ( 1998; ). Rubella virus replication complexes are virus-modified lysosomes. Virology 240, 57–63.[CrossRef]
    [Google Scholar]
  19. Marr, L. D., Wang, C. Y. & Frey, T. K. ( 1994; ). Expression of the rubella virus nonstructural protein ORF and demonstration of proteolytic processing. Virology 198, 586–592.[CrossRef]
    [Google Scholar]
  20. Nethe, M., Berkhout, B. & van der Kuyl, A. C. ( 2005; ). Retroviral superinfection resistance. Retrovirology 2, 52 [CrossRef]
    [Google Scholar]
  21. Parkman, P. D., Buescher, E. L., Artenstein, M. S., McCown, J. M., Mundon, F. K. & Druzd, A. D. ( 1964; ). Studies of rubella. I. Properties of the virus. J Immunol 93, 595–607.
    [Google Scholar]
  22. Pugachev, K. V. & Frey, T. K. ( 1998; ). Effects of defined mutations in the 5′ nontranslated region of rubella virus genomic RNA on virus viability and macromolecule synthesis. J Virol 72, 641–650.
    [Google Scholar]
  23. Sawicki, D. L., Perri, S., Polo, J. M. & Sawicki, S. G. ( 2006; ). Role for nsP2 proteins in the cessation of alphavirus minus-strand synthesis by host cells. J Virol 80, 360–371.[CrossRef]
    [Google Scholar]
  24. Schaller, T., Appel, N., Koutsoudakis, G., Kallis, S., Lohmann, V., Pietschmann, T. & Bartenschlager, R. ( 2007; ). Analysis of hepatitis C virus superinfection exclusion by using novel fluorochrome gene-tagged viral genomes. J Virol 81, 4591–4603.[CrossRef]
    [Google Scholar]
  25. Schneider-Schaulies, J., Schnorr, J. J., Brinckmann, U., Dunster, L. M., Baczko, K., Liebert, U. G., Schneider-Schaulies, S. & ter Meulen, V. ( 1995; ). Receptor usage and differential downregulation of CD46 by measles virus wild-type and vaccine strains. Proc Natl Acad Sci U S A 92, 3943–3947.[CrossRef]
    [Google Scholar]
  26. Simon, K. O., Cardamone, J. J., Jr, Whitaker-Dowling, P. A., Youngner, J. S. & Widnell, C. C. ( 1990; ). Cellular mechanisms in the superinfection exclusion of vesicular stomatitis virus. Virology 177, 375–379.[CrossRef]
    [Google Scholar]
  27. Singh, I. R., Suomalainen, M., Varadarajan, S., Garoff, H. & Helenius, A. ( 1997; ). Multiple mechanisms for the inhibition of entry and uncoating of superinfecting Semliki Forest virus. Virology 231, 59–71.[CrossRef]
    [Google Scholar]
  28. Tscherne, D. M., Evans, M. J., von Hahn, T., Jones, C. T., Stamataki, Z., McKeating, J. A., Lindenbach, B. D. & Rice, C. M. ( 2007; ). Superinfection exclusion in cells infected with hepatitis C virus. J Virol 81, 3693–3703.[CrossRef]
    [Google Scholar]
  29. Tzeng, W. P., Matthews, J. D. & Frey, T. K. ( 2006; ). Analysis of rubella virus capsid protein-mediated enhancement of replicon replication and mutant rescue. J Virol 80, 3966–3974.[CrossRef]
    [Google Scholar]
  30. Walters, K. A., Joyce, M. A., Addison, W. R., Fischer, K. P. & Tyrrell, D. L. ( 2004; ). Superinfection exclusion in duck hepatitis B virus infection is mediated by the large surface antigen. J Virol 78, 7925–7937.[CrossRef]
    [Google Scholar]
  31. Wang, X. & Gillam, S. ( 2001; ). Mutations in the GDD motif of rubella virus putative RNA-dependent RNA polymerase affect virus replication. Virology 285, 322–331.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83092-0
Loading
/content/journal/jgv/10.1099/vir.0.83092-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error