Biological properties and relative fitness of inter-subgroup cucumber mosaic virus RNA 3 recombinants produced Free

Abstract

reverse transcription of a mixture of total RNA from plants infected with the I17F or R strains of cucumber mosaic virus (CMV), representative of subgroups IA and II, respectively, results in viral cDNA populations including rare recombinant RNA 3 molecules, some of which also have point mutations. The biological properties of 17 recombinants in the capsid gene or the 3′ non-coding region of RNA 3 were evaluated when associated with I17F RNAs 1 and 2. Six viruses displayed deficiencies (non-viability, deficiencies for movement and/or replication, delayed infection, loss of aphid transmissibility). Nine induced symptoms close to those of I17F-CMV on tobacco and pepper plants. All recombinants bearing the movement protein (MP) of R-CMV and part or most of the capsid protein (CP) of I17F-CMV, as well as the recombinant created by exchanging the corresponding open reading frames, also induced filiformism on tobacco, but induced only faint symptoms on melon. Two recombinants induced atypically severe symptoms on both tobacco and pepper. Most of the recombinants generally accumulated to lower levels than the wild-type I17F strain in tobacco. Three recombinants, however, including one responsible for severe symptoms, accumulated to generally higher levels than I17F-CMV. When two of these were tested in co-infection experiments with I17F RNA 3, they proved to be poorly competitive, suggesting that they would be unlikely to emerge in the field.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83077-0
2007-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/10/2852.html?itemId=/content/journal/jgv/10.1099/vir.0.83077-0&mimeType=html&fmt=ahah

References

  1. Aaziz R., Tepfer M. 1999; Recombination between genomic RNAs of two cucumoviruses under conditions of minimal selection pressure. Virology 263:282–289 [CrossRef]
    [Google Scholar]
  2. Bonnet J., Fraile A., Sacristán S., Malpica J. M., García-Arenal F. 2005; Role of recombination in the evolution of natural populations of Cucumber mosaic virus , a tripartite RNA plant virus. Virology 332:359–368 [CrossRef]
    [Google Scholar]
  3. Carrère I., Tepfer M., Jacquemond M. 1999; Recombinants of cucumber mosaic virus (CMV): determinants for host range and symptomatology. Arch Virol 144:365–379 [CrossRef]
    [Google Scholar]
  4. Chen Y.-K., Goldbach R., Prins M. 2002; Inter- and intramolecular recombinations in the Cucumber mosaic virus genome related to adaptation to Alstroemeria . J Virol 76:4119–4124 [CrossRef]
    [Google Scholar]
  5. de Wispelaere M., Gaubert S., Trouilloud S., Belin C., Tepfer M. 2005; A map of the diversity of RNA3 recombinants appearing in plants infected with Cucumber mosaic virus and Tomato aspermy virus . Virology 331:117–127 [CrossRef]
    [Google Scholar]
  6. Desbiez C., Lecoq H. 2004; The nucleotide sequence of Watermelon mosaic virus (WMV, Potyvirus ) reveals interspecific recombination between two related potyviruses in the 5′ part of the genome. Arch Virol 149:1619–1632
    [Google Scholar]
  7. Fernandez-Delmond I., Pierrugues O., de Wispelaere M., Guilbaud L., Gaubert S., Divéki Z., Godon C., Tepfer M., Jacquemond M. 2004; A novel strategy for creating recombinant infectious RNA virus genomes. J Virol Methods 121:247–257 [CrossRef]
    [Google Scholar]
  8. Fraile A., Alonso-Prados J. L., Aranda M. A., Bernal J. J., Malpica J. M., García-Arenal F. 1997; Genetic exchange by recombination or reassortment is infrequent in natural populations of a tripartite RNA plant virus. J Virol 71:934–940
    [Google Scholar]
  9. García-Arenal F., Fraile A., Malpica J. M. 2001; Variability and genetic structure of plant virus populations. Annu Rev Phytopathol 39:157–186 [CrossRef]
    [Google Scholar]
  10. García-Arenal F., Fraile A., Malpica J. M. 2003; Variation and evolution of plant virus populations. Int Microbiol 6:225–232 [CrossRef]
    [Google Scholar]
  11. Glais L., Tribodet M., Kerlan C. 2002; Genomic variability in Potato Potyvirus Y (PVY): evidence that PVYNW and PVYNTN variants are single to multiple recombinants between PVYO and PVYN isolates. Arch Virol 147:363–378 [CrossRef]
    [Google Scholar]
  12. Glasa M., Paunovic S., Jevremovic D., Myrta A., Pittnerova S., Candresse T. 2005; Analysis of recombinant Plum pox virus (PPV) isolates from Serbia confirms genetic homogeneity and supports a regional origin for the PPV-Rec subgroup. Arch Virol 150:2051–2060 [CrossRef]
    [Google Scholar]
  13. Lin H.-X., Rubio L., Smythe A. B., Falk B. W. 2004; Molecular population genetics of Cucumber mosaic virus in California: evidence for founder effects and reassortment. J Virol 78:6666–6675 [CrossRef]
    [Google Scholar]
  14. Lot H., Marrou J., Quiot J. B., Esvan C. 1972; Contribution à l'étude du virus de la mosaïque du concombre (CMV). I. Méthode de purification rapide du virus. Ann Phytopathol 4:25–38 (in French
    [Google Scholar]
  15. MacFarlane S. A. 1997; Natural recombination among plant virus genomes: evidence from tobraviruses. Semin Virol 8:25–31 [CrossRef]
    [Google Scholar]
  16. Masuta C., Ueda S., Suzuki M., Uyeda I. 1998; Evolution of a quadripartite hybrid virus by interspecific exchange and recombination between replicase components of two related tripartite viruses. Proc Natl Acad Sci U S A 95:10487–10492 [CrossRef]
    [Google Scholar]
  17. Mayo M. A., Ziegler-Graff V. 1996; Molecular biology of luteoviruses. Adv Virus Res 46:413–460
    [Google Scholar]
  18. Moissiard G., Voinnet O. 2004; Viral suppression of RNA silencing in plants. Mol Plant Pathol 5:71–82 [CrossRef]
    [Google Scholar]
  19. Moonan F., Molina J., Mirkov T. E. 2000; Sugarcane yellow leaf virus : an emerging virus that has evolved by recombination between luteoviral and poleroviral ancestors. Virology 269:156–171 [CrossRef]
    [Google Scholar]
  20. Ng J. C. K., Josefsson C., Clark A. J., Franz A. W. E., Perry K. L. 2005; Virion stability and aphid vector transmissibility of Cucumber mosaic virus mutants. Virology 332:397–405 [CrossRef]
    [Google Scholar]
  21. Palukaitis P., García-Arenal F. 2003; Cucumoviruses. Adv Virus Res 62:241–323
    [Google Scholar]
  22. Quiot J. B., Devergne J. C., Cardin L., Verbrugghe M., Marchoux G., Labonne G. 1979; Ecologie et épidémiologie du virus de la mosaïque du concombre dans le Sud-Est de la France. VII. Répartition de deux types de populations virales dans des cultures sensibles. Ann Phytopathol 11:359–373 (in French
    [Google Scholar]
  23. Roth B. M., Pruss G. J., Vance V. B. 2004; Plant viral suppressors of RNA silencing. Virus Res 102:97–108 [CrossRef]
    [Google Scholar]
  24. Takeshita M., Shigemune N., Kikuhara K., Furuya N., Takanami Y. 2004; Spatial analysis for exclusive interactions between subgroups I and II of Cucumber mosaic virus in cowpea. Virology 328:45–51 [CrossRef]
    [Google Scholar]
  25. Tomimura K., Gibbs A. J., Jenner C. E., Walsh A., Ohshima K. 2003; The phylogeny of Turnip mosaic virus ; comparisons of 38 genomic sequences reveal a Eurasian origin and a recent ‘emergence’ in east Asia. Mol Ecol 12:2099–2111 [CrossRef]
    [Google Scholar]
  26. Vigne E., Demangeat G., Komar V., Fuchs M. 2005; Characterization of a naturally recombinant isolate of Grapevine fanleaf virus . Arch Virol 150:2241–2255 [CrossRef]
    [Google Scholar]
  27. Worobey M., Holmes E. C. 1999; Evolutionary aspects of recombination in RNA viruses. J Gen Virol 80:2535–2543
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83077-0
Loading
/content/journal/jgv/10.1099/vir.0.83077-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed