1887

Abstract

A combined rolling-circle amplification (RCA) and sequence-independent single primer amplification (SISPA) approach was applied to four samples of human plasma and one sample of saliva from a cat. This approach permitted the characterization of nine anelloviruses. Most of them were identified as highly divergent strains that were classified into species of the genus . The smallest anellovirus described so far in humans was characterized (2PoSMA, 2002 nt; ‘’ species). Two highly divergent sequences belonging to the species (LIL-y1, 2887 nt; LIL-y2, 2871 nt), which clustered into a new phylogenetic branch, were also identified in human plasma samples. Finally, two genomes that are separated by a genetic divergence of 46 % were characterized in the cat's saliva, one of these creating a distinct phylogenetic branch (PRA1, 2019 nt). These results highlight the potential of RCA–SISPA for detecting circular (or circularized) genomes.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83071-0
2007-10-01
2019-11-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/10/2696.html?itemId=/content/journal/jgv/10.1099/vir.0.83071-0&mimeType=html&fmt=ahah

References

  1. Allander, T., Emerson, S. U., Engle, R. E., Purcell, R. H. & Bukh, J. ( 2001; ). A virus discovery method incorporating DNase treatment and its application to the identification of two bovine parvovirus species. Proc Natl Acad Sci U S A 98, 11609–11614.[CrossRef]
    [Google Scholar]
  2. Ambrose, H. E. & Clewley, J. P. ( 2006; ). Virus discovery by sequence-independent genome amplification. Rev Med Virol 16, 365–383.[CrossRef]
    [Google Scholar]
  3. Andreoli, E., Maggi, F., Pistello, M., Meschi, S., Vatteroni, M., Nelli, L. C. & Bendinelli, M. ( 2006; ). Small Anellovirus in hepatitis C patients and healthy controls. Emerg Infect Dis 12, 1175–1176.[CrossRef]
    [Google Scholar]
  4. Biagini, P., Gallian, P., Attoui, H., Touinssi, M., Cantaloube, J., de Micco, P. & de Lamballerie, X. ( 2001; ). Genetic analysis of full-length genomes and subgenomic sequences of TT virus-like mini virus human isolates. J Gen Virol 82, 379–383.
    [Google Scholar]
  5. Biagini, P., Todd, D., Bendinelli, M., Hino, S., Mankertz, A., Mishiro, S., Niel, C., Okamoto, H., Raidal, S. & other authors ( 2005; ). Anellovirus. In Virus Taxonomy: Eighth Report of the International Committee for the Taxonomy of Viruses, pp. 335-341. Edited by C. M. Fauquet, M. A. Mayo, J. Maniloff, U. Desselberger & L. A. Ball. London: Elsevier/Academic Press.
  6. Biagini, P., de Micco, P. & de Lamballerie, X. ( 2006a; ). Identification of a third member of the Anellovirus genus (‘small anellovirus’) in French blood donors. Arch Virol 151, 405–408.[CrossRef]
    [Google Scholar]
  7. Biagini, P., Gallian, P., Cantaloube, J. F., Attoui, H., de Micco, P. & de Lamballerie, X. ( 2006b; ). Distribution and genetic analysis of TTV and TTMV major phylogenetic groups in French blood donors. J Med Virol 78, 298–304.[CrossRef]
    [Google Scholar]
  8. Biagini, P., de Lamballerie, X. & de Micco, P. ( 2007; ). Effective detection of highly divergent viral genomes in infected cell lines using a new subtraction strategy (primer extension enrichment reaction – PEER). J Virol Methods 139, 106–110.[CrossRef]
    [Google Scholar]
  9. Bigarré, L., Beven, V., de Boisseson, C., Grasland, B., Rose, N., Biagini, P. & Jestin, A. ( 2005; ). Pig anelloviruses are highly prevalent in swine herds in France. J Gen Virol 86, 631–635.[CrossRef]
    [Google Scholar]
  10. Dean, F. B., Nelson, J. R., Giesler, T. L. & Lasken, R. S. ( 2001; ). Rapid amplification of plasmid and phage DNA using Phi29 DNA polymerase and multiply-primed rolling circle amplification. Genome Res 11, 1095–1099.[CrossRef]
    [Google Scholar]
  11. Esteban, J. A., Salas, M. & Blanco, L. ( 1993; ). Fidelity of Phi29 DNA polymerase. Comparison between protein-primed initiation and DNA polymerisation. J Biol Chem 268, 2719–2726.
    [Google Scholar]
  12. Haible, D., Kober, S. & Jeske, H. ( 2006; ). Rolling circle amplification revolutionizes diagnosis and genomics of geminiviruses. J Virol Methods 135, 9–16.[CrossRef]
    [Google Scholar]
  13. Jelcic, I., Hotz-Wagenblatt, A., Hunziker, A., Zur Hausen, H. & de Villiers, E. M. ( 2004; ). Isolation of multiple TT virus genotypes from spleen biopsy tissue from a Hodgkin's disease patient: genome reorganization and diversity in the hypervariable region. J Virol 78, 7498–7507.[CrossRef]
    [Google Scholar]
  14. Johne, R., Fernandez-de-Luco, D., Hofle, U. & Muller, H. ( 2006; ). Genome of a novel circovirus of starlings, amplified by multiply primed rolling-circle amplification. J Gen Virol 87, 1189–1195.[CrossRef]
    [Google Scholar]
  15. Jones, M. S., Kapoor, A., Lukashov, V. V., Simmonds, P., Hecht, F. & Delwart, E. ( 2005; ). New DNA viruses identified in patients with acute viral infection syndrome. J Virol 79, 8230–8236.[CrossRef]
    [Google Scholar]
  16. Kumar, S., Tamura, K. & Nei, M. ( 2004; ). mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef]
    [Google Scholar]
  17. Miyata, H., Tsunoda, H., Kazi, A., Yamada, A., Khan, M. A., Murakami, J., Kamahora, T., Shiraki, K. & Hino, S. ( 1999; ). Identification of a novel GC-rich 113-nucleotide region to complete the circular, single-stranded DNA genome of TT virus, the first human circovirus. J Virol 73, 3582–3586.
    [Google Scholar]
  18. Niel, C., Diniz-Mendes, L. & Devalle, S. ( 2005; ). Rolling-circle amplification of Torque teno virus (TTV) complete genomes from human and swine sera and identification of a novel swine TTV genogroup. J Gen Virol 86, 1343–1347.[CrossRef]
    [Google Scholar]
  19. Ninomiya, M., Nishizawa, T., Takahashi, M., Lorenzo, F. R., Shimosegawa, T. & Okamoto, H. ( 2007; ). Identification and genomic characterization of a novel human torque teno virus of 3.2 kb. J Gen Virol 88, 1939–1944.[CrossRef]
    [Google Scholar]
  20. Nishizawa, T., Okamoto, H., Konishi, K., Yoshizawa, H., Miyakawa, Y. & Mayumi, M. ( 1997; ). A novel DNA virus (TTV) associated with elevated transaminase levels in posttransfusion hepatitis of unknown etiology. Biochem Biophys Res Commun 241, 92–97.[CrossRef]
    [Google Scholar]
  21. Okamoto, H., Nishizawa, T., Tawara, A., Peng, Y., Takahashi, M., Kishimoto, J., Tanaka, T., Miyakawa, Y. & Mayumi, M. ( 2000; ). Species-specific TT viruses in humans and nonhuman primates and their phylogenetic relatedness. Virology 277, 368–378.[CrossRef]
    [Google Scholar]
  22. Okamoto, H., Takahashi, M., Nishizawa, T., Tawara, A., Fukai, K., Muramatsu, U., Naito, Y. & Yoshikawa, A. ( 2002; ). Genomic characterization of TT viruses (TTVs) in pigs, cats and dogs and their relatedness with species-specific TTVs in primates and tupaias. J Gen Virol 83, 1291–1297.
    [Google Scholar]
  23. Peng, Y. H., Nishizawa, T., Takahashi, M., Ishikawa, T., Yoshikawa, A. & Okamoto, H. ( 2002; ). Analysis of the entire genomes of thirteen TT virus variants classifiable into the fourth and fifth genetic groups, isolated from viremic infants. Arch Virol 147, 21–41.[CrossRef]
    [Google Scholar]
  24. Pistello, M., Morrica, A., Maggi, F., Vatteroni, M. L., Freer, G., Fornai, C., Casula, F., Marchi, S., Ciccorossi, P. & other authors ( 2001; ). TT virus levels in the plasma of infected individuals with different hepatic and extrahepatic pathology. J Med Virol 63, 189–195.[CrossRef]
    [Google Scholar]
  25. Rector, A., Tachezy, R. & Van Ranst, M. ( 2004; ). A sequence-independent strategy for detection and cloning of circular DNA virus genomes by using multiply primed rolling-circle amplification. J Virol 78, 4993–4998.[CrossRef]
    [Google Scholar]
  26. Reyes, G. R. & Kim, J. P. ( 1991; ). Sequence-independent, single-primer amplification (SISPA) of complex DNA populations. Mol Cell Probes 5, 473–481.[CrossRef]
    [Google Scholar]
  27. Takahashi, K., Iwasa, Y., Hijikata, M. & Mishiro, S. ( 2000; ). Identification of a new human DNA virus (TTV-like mini virus, TLMV) intermediately related to TT virus and chicken anemia virus. Arch Virol 145, 979–993.[CrossRef]
    [Google Scholar]
  28. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  29. Zuker, M. ( 2003; ). mfold web server for nucleic acid folding and hybridisation prediction. Nucleic Acids Res 31, 3406–3415.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83071-0
Loading
/content/journal/jgv/10.1099/vir.0.83071-0
Loading

Data & Media loading...

Supplements

vol. , part 10, pp. 2696 - 2701

Predicted genomic structure of isolates LIL-y3 and PRA4

Selected DNA fragments and oligonucleotide primers used forsequence extensions [Single PDF file](190 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error