1887

Abstract

Feline immunodeficiency virus (FIV) interacts with dendritic cells (DC) during initiation of infection, but whether DC support or transfer FIV infection remains unclear. To address this issue, we studied the susceptibility of feline myeloid DC to FIV infection and assessed potential transfer of infection from DC to CD4 T cells. FIV was detected in membrane-bound vesicles of DC within 2 h of inoculation, although only low concentrations of FIV DNA were found in virus-exposed isolated DC. Addition of resting CD4 T cells increased viral DNA levels; however, addition of activated CD4 T cells resulted in a burst of viral replication manifested by FIV p27 capsid antigen generation. To determine whether transfer of FIV infection required productively infected DC (vs virus bound to DC but not internalized), virus-exposed DC were cultured for 2 days to allow for degradation of uninternalized virus and initiation of infection in the DC, then CD4 T blasts were added. Infection of T cells remained robust, indicating that T-cell infection is likely to be mediated by viral infection of DC followed by viral transfer during normal DC/T-cell interactions. We conclude that feline DC support restricted FIV infection, which nevertheless is sufficient to efficiently transfer infection to susceptible T cells and trigger the major burst of viral replication. Feline DC/FIV/T-cell interactions (similar to those believed to occur in human immunodeficiency virus and simian immunodeficiency virus infections) highlight the means by which immunodeficiency-inducing lentiviruses exploit normal DC/T-cell interactions to transfer and amplify virus infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83068-0
2008-03-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/3/709.html?itemId=/content/journal/jgv/10.1099/vir.0.83068-0&mimeType=html&fmt=ahah

References

  1. Blauvelt, A., Asada, H., Saville, M. W., Klaus-Kovtun, V., Altman, D. J., Yarchoan, R. & Katz, S. I. ( 1997; ). Productive infection of dendritic cells by HIV-1 and their ability to capture virus are mediated through separate pathways. J Clin Invest 100, 2043–2053.[CrossRef]
    [Google Scholar]
  2. Blom, J., Nielsen, C. & Rhodes, J. M. ( 1993; ). An ultrastructural study of HIV-infected human dendritic cells and monocytes/macrophages. APMIS 101, 672–680.[CrossRef]
    [Google Scholar]
  3. Cameron, P. U., Freudenthal, P. S., Barker, J. M., Gezelter, S., Inaba, K. & Steinman, R. M. ( 1992; ). Dendritic cells exposed to human immunodeficiency virus type-1 transmit a vigorous cytopathic infection to CD4+ T cells. Science 257, 383–387.[CrossRef]
    [Google Scholar]
  4. Cameron, P. U., Lowe, M. G., Crowe, S. M., O'Doherty, U., Pope, M., Gezelter, S. & Steinman, R. M. ( 1994; ). Susceptibility of dendritic cells to HIV-1 infection in vitro. J Leukoc Biol 56, 257–265.
    [Google Scholar]
  5. Chiu, Y. L., Soros, V. B., Kreisberg, J. F., Stopak, K., Yonemoto, W. & Greene, W. C. ( 2005; ). Cellular APOBEC3G restricts HIV-1 infection in resting CD4+ T cells. Nature 435, 108–114.[CrossRef]
    [Google Scholar]
  6. Dreitz, M. J., Dow, S. W., Fiscus, S. A. & Hoover, E. A. ( 1995; ). Development of monoclonal antibodies and capture immunoassays for feline immunodeficiency virus. Am J Vet Res 56, 764–768.
    [Google Scholar]
  7. Frank, I. & Pope, M. ( 2002; ). The enigma of dendritic cell-immunodeficiency virus interplay. Curr Mol Med 2, 229–248.[CrossRef]
    [Google Scholar]
  8. Frank, I., Piatak, M., Jr, Stoessel, H., Romani, N., Bonnyay, D., Lifson, J. D. & Pope, M. ( 2002; ). Infectious and whole inactivated simian immunodeficiency viruses interact similarly with primate dendritic cells (DCs): differential intracellular fate of virions in mature and immature DCs. J Virol 76, 2936–2951.[CrossRef]
    [Google Scholar]
  9. Frankel, S. S., Wenig, B. M., Burke, A. P., Mannan, P., Thompson, L. D., Abbondanzo, S. L., Nelson, A. M., Pope, M. & Steinman, R. M. ( 1996; ). Replication of HIV-1 in dendritic cell-derived syncytia at the mucosal surface of the adenoid. Science 272, 115–117.[CrossRef]
    [Google Scholar]
  10. Frankel, S. S., Tenner-Racz, K., Racz, P., Wenig, B. M., Hansen, C. H., Heffner, D., Nelson, A. M., Pope, M. & Steinman, R. M. ( 1997; ). Active replication of HIV-1 at the lymphoepithelial surface of the tonsil. Am J Pathol 151, 89–96.
    [Google Scholar]
  11. Ganesh, L., Burstein, E., Guha-Niyogi, A., Louder, M. K., Mascola, J. R., Klomp, L. W., Wijmenga, C., Duckett, C. S. & Nabel, G. J. ( 2003; ). The gene product Murr1 restricts HIV-1 replication in resting CD4+ lymphocytes. Nature 426, 853–857.[CrossRef]
    [Google Scholar]
  12. Granelli-Piperno, A., Delgado, E., Finkel, V., Paxton, W. & Steinman, R. M. ( 1998; ). Immature dendritic cells selectively replicate macrophagetropic (M-tropic) human immunodeficiency virus type 1, while mature cells efficiently transmit both M- and T-tropic virus to T cells. J Virol 72, 2733–2737.
    [Google Scholar]
  13. Hu, J., Gardner, M. B. & Miller, C. J. ( 2000; ). Simian immunodeficiency virus rapidly penetrates the cervicovaginal mucosa after intravaginal inoculation and infects intraepithelial dendritic cells. J Virol 74, 6087–6095.[CrossRef]
    [Google Scholar]
  14. Ignatius, R., Isdell, F., O'Doherty, U. & Pope, M. ( 1998; ). Dendritic cells from skin and blood of macaques both promote SIV replication with T cells from different anatomical sites. J Med Primatol 27, 121–128.[CrossRef]
    [Google Scholar]
  15. Leong, A. S. & Sormunen, R. T. ( 1998; ). Microwave procedures for electron microscopy and resin-embedded sections. Micron 29, 397–409.[CrossRef]
    [Google Scholar]
  16. Lore, K., Smed-Sorensen, A., Vasudevan, J., Mascola, J. R. & Koup, R. A. ( 2005; ). Myeloid and plasmacytoid dendritic cells transfer HIV-1 preferentially to antigen-specific CD4+ T cells. J Exp Med 201, 2023–2033.[CrossRef]
    [Google Scholar]
  17. McDonald, D., Wu, L., Bohks, S. M., KewalRamani, V. N., Unutmaz, D. & Hope, T. J. ( 2003; ). Recruitment of HIV and its receptors to dendritic cell-T cell junctions. Science 300, 1295–1297.[CrossRef]
    [Google Scholar]
  18. Messmer, D., Ignatius, R., Santisteban, C., Steinman, R. M. & Pope, M. ( 2000; ). The decreased replicative capacity of simian immunodeficiency virus SIVmac239Δnef is manifest in cultures of immature dendritic cells and T cells. J Virol 74, 2406–2413.[CrossRef]
    [Google Scholar]
  19. Milush, J. M., Kosub, D., Marthas, M., Schmidt, K., Scott, F., Wozniakowski, A., Brown, C., Westmoreland, S. & Sodora, D. L. ( 2004; ). Rapid dissemination of SIV following oral inoculation. AIDS 18, 2371–2380.
    [Google Scholar]
  20. Oswald-Richter, K., Grill, S. M., Leelawong, M. & Unutmaz, D. ( 2004; ). HIV infection of primary human T cells is determined by tunable thresholds of T cell activation. Eur J Immunol 34, 1705–1714.[CrossRef]
    [Google Scholar]
  21. Patterson, S. & Knight, S. C. ( 1987; ). Susceptibility of human peripheral blood dendritic cells to infection by human immunodeficiency virus. J Gen Virol 68, 1177–1181.[CrossRef]
    [Google Scholar]
  22. Pedersen, N. C., Leutenegger, C. M., Woo, J. & Higgins, J. ( 2001; ). Virulence differences between two field isolates of feline immunodeficiency virus (FIV-A Petaluma and FIV-C PGammar) in young adult specific pathogen free cats. Vet Immunol Immunopathol 79, 53–67.[CrossRef]
    [Google Scholar]
  23. Pion, M., Granelli-Piperno, A., Mangeat, B., Stalder, R., Correa, R., Steinman, R. M. & Piguet, V. ( 2006; ). APOBEC3G/3F mediates intrinsic resistance of monocyte-derived dendritic cells to HIV-1 infection. J Exp Med 203, 2887–2893.[CrossRef]
    [Google Scholar]
  24. Pope, M., Betjes, M. G., Romani, N., Hirmand, H., Cameron, P. U., Hoffman, L., Gezelter, S., Schuler, G. & Steinman, R. M. ( 1994; ). Conjugates of dendritic cells and memory T lymphocytes from skin facilitate productive infection with HIV-1. Cell 78, 389–398.[CrossRef]
    [Google Scholar]
  25. Pope, M., Gezelter, S., Gallo, N., Hoffman, L. & Steinman, R. M. ( 1995; ). Low levels of HIV-1 infection in cutaneous dendritic cells promote extensive viral replication upon binding to memory CD4+ T cells. J Exp Med 182, 2045–2056.[CrossRef]
    [Google Scholar]
  26. Pope, M., Elmore, D., Ho, D. & Marx, P. ( 1997; ). Dendritic cell-T cell mixtures, isolated from the skin and mucosae of macaques, support the replication of SIV. AIDS Res Hum Retroviruses 13, 819–827.[CrossRef]
    [Google Scholar]
  27. Sodora, D. L., Shpaer, E. G., Kitchell, B. E., Dow, S. W., Hoover, E. A. & Mullins, J. I. ( 1994; ). Identification of three feline immunodeficiency virus (FIV) env gene subtypes and comparison of the FIV and human immunodeficiency virus type 1 evolutionary patterns. J Virol 68, 2230–2238.
    [Google Scholar]
  28. Sprague, W. S., Pope, M. & Hoover, E. A. ( 2005; ). Culture and comparison of feline myeloid dendritic cells vs macrophages. J Comp Pathol 133, 136–145.[CrossRef]
    [Google Scholar]
  29. Stahl-Hennig, C., Steinman, R. M., Tenner-Racz, K., Pope, M., Stolte, N., Matz-Rensing, K., Grobschupff, G., Raschdorff, B., Hunsmann, G. & Racz, P. ( 1999; ). Rapid infection of oral mucosal-associated lymphoid tissue with simian immunodeficiency virus. Science 285, 1261–1265.[CrossRef]
    [Google Scholar]
  30. Stevenson, M., Stanwick, T. L., Dempsey, M. P. & Lamonica, C. A. ( 1990; ). HIV-1 replication is controlled at the level of T cell activation and proviral integration. EMBO J 9, 1551–1560.
    [Google Scholar]
  31. Turville, S. G., Santos, J. J., Frank, I., Cameron, P. U., Wilkinson, J., Miranda-Saksena, M., Dable, J., Stossel, H., Romani, N. & other authors ( 2004; ). Immunodeficiency virus uptake, turnover, and 2-phase transfer in human dendritic cells. Blood 103, 2170–2179.[CrossRef]
    [Google Scholar]
  32. Turville, S. G., Vermeire, K., Balzarini, J. & Schols, D. ( 2005; ). Sugar-binding proteins potently inhibit dendritic cell human immunodeficiency virus type 1 (HIV-1) infection and dendritic-cell-directed HIV-1 transfer. J Virol 79, 13519–13527.[CrossRef]
    [Google Scholar]
  33. Unutmaz, D., KewalRamani, V. N., Marmon, S. & Littman, D. R. ( 1999; ). Cytokine signals are sufficient for HIV-1 infection of resting human T lymphocytes. J Exp Med 189, 1735–1746.[CrossRef]
    [Google Scholar]
  34. van der Meer, F. J., Schuurman, N. M. & Egberink, H. F. ( 2007; ). Feline immunodeficiency virus infection is enhanced by feline bone marrow-derived dendritic cells. J Gen Virol 88, 251–258.[CrossRef]
    [Google Scholar]
  35. Weissman, D., Daucher, J., Barker, T., Adelsberger, J., Baseler, M. & Fauci, A. S. ( 1996; ). Cytokine regulation of HIV replication induced by dendritic cell–CD4-positive T cell interactions. AIDS Res Hum Retroviruses 12, 759–767.[CrossRef]
    [Google Scholar]
  36. Wiley, R. D. & Gummuluru, S. ( 2006; ). Immature dendritic cell-derived exosomes can mediate HIV-1 trans infection. Proc Natl Acad Sci U S A 103, 738–743.[CrossRef]
    [Google Scholar]
  37. Zack, J. A., Haislip, A. M., Krogstad, P. & Chen, I. S. ( 1992; ). Incompletely reverse-transcribed human immunodeficiency virus type 1 genomes in quiescent cells can function as intermediates in the retroviral life cycle. J Virol 66, 1717–1725.
    [Google Scholar]
  38. Zhang, Z., Schuler, T., Zupancic, M., Wietgrefe, S., Staskus, K. A., Reimann, K. A., Reinhart, T. A., Rogan, M., Cavert, W. & other authors ( 1999; ). Sexual transmission and propagation of SIV and HIV in resting and activated CD4+ T cells. Science 286, 1353–1357.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83068-0
Loading
/content/journal/jgv/10.1099/vir.0.83068-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error