1887

Abstract

Computer analysis of 158 hepatitis C virus (HCV) 5′ untranslated region (5′ UTR) sequences from the six genotypes showed that the 5′ UTR from genotype 3 displays seven specific non-contiguous nucleotide changes, at positions 8, 13, 14, 70, 97, 203 and 224. The purpose of this study was to investigate the impact of these changes on translation and replication activities. Indeed, these modifications could alter both the internal ribosome entry site (IRES) present in the 5′ UTR of the plus-strand RNA and the 3′ end of the minus strand involved in the initiation of plus-strand RNA synthesis. We found that the genotype 3-specific nucleotide changes do not modify the or translation activity of the corresponding IRES, in comparison with that of genotype 1. In contrast, replication from the minus-strand RNA is eight times less efficient for genotype 3 than for genotype 1 RNA, suggesting the involvement of some nucleotide changes in the reduction of RNA synthesis. Nucleotides 13, 14 and 224 were found to be responsible for this effect. Moreover, a reduced replicative activity was confirmed for genotype 3, but to a lesser extent than that observed , using an RNA minigenome.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83067-0
2008-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/1/212.html?itemId=/content/journal/jgv/10.1099/vir.0.83067-0&mimeType=html&fmt=ahah

References

  1. Abid K., Pazienza V., de Gottardi A., Rubbia-Brandt L., Conne B., Pugnale P., Rossi C., Mangia A., Negro F. 2005; An in vitro model of hepatitis C virus genotype 3a-associated triglycerides accumulation. J Hepatol 42:744–751 [CrossRef]
    [Google Scholar]
  2. Astier-Gin T., Bellecave P., Litvak S., Ventura M. 2005; Template requirements and binding of hepatitis C virus NS5B polymerase during in vitro RNA synthesis from the 3′-end of virus minus-strand RNA. FEBS J 272:3872–3886 [CrossRef]
    [Google Scholar]
  3. Collier A. J., Tang S., Elliott R. M. 1998; Translation efficiencies of the 5′ untranslated region from representatives of the six major genotypes of hepatitis C virus using a novel bicistronic reporter assay system. J Gen Virol 79:2359–2366
    [Google Scholar]
  4. Combet C., Penin F., Geourjon C., Deléage G. 2004; HCVDB: hepatitis C virus sequences database. Appl Bioinformatics 3:237–240 [CrossRef]
    [Google Scholar]
  5. Dumas E., Staedel C., Colombat M., Reigadas S., Chabas S., Astier-Gin T., Cahour A., Litvak S., Ventura M. 2003; A promoter activity is present in the DNA sequence corresponding to the hepatitis C virus 5′ UTR. Nucleic Acids Res 31:1275–1281 [CrossRef]
    [Google Scholar]
  6. Dumas E., Masante C., Astier-Gin T., Lapaillerie D., Ventura M. 2007; The hepatitis C virus minigenome: a new cellular model to study viral replication. J Virol Methods 142:59–66 [CrossRef]
    [Google Scholar]
  7. Friebe P., Bartenschlager R. 2002; Genetic analysis of sequences in the 3′ nontranslated region of hepatitis C virus that are important for RNA replication. J Virol 76:5326–5338 [CrossRef]
    [Google Scholar]
  8. Friebe P., Lohmann V., Krieger N., Bartenschlager R. 2001; Sequences in the 5′ nontranslated region of hepatitis C virus required for RNA replication. J Virol 75:12047–12057 [CrossRef]
    [Google Scholar]
  9. Hazari S., Patil A., Joshi V., Sullivan D. E., Fermin C. D., Garry R. F., Elliott R. M., Dash S. 2005; Alpha interferon inhibits translation mediated by the internal ribosome entry site of six different hepatitis C virus genotypes. J Gen Virol 86:3047–3053 [CrossRef]
    [Google Scholar]
  10. He Y., Yan W., Coito C., Li Y., Gale M. Jr, Katze M. G. 2003; The regulation of hepatitis C virus (HCV) internal ribosome-entry site-mediated translation by HCV replicons and nonstructural proteins. J Gen Virol 84:535–543 [CrossRef]
    [Google Scholar]
  11. Honda M., Beard M. R., Ping L.-H., Lemon S. M. 1999; A phylogenetically conserved stem-loop structure at the 5′ border of the internal ribosome entry site of hepatitis C virus is required for cap-independent viral translation. J Virol 73:1165–1174
    [Google Scholar]
  12. Hourioux C., Patient R., Morin A., Blanchard E., Moreau A., Trassard S., Giraudeau B., Roingeard P. 2007; The genotype 3-specific hepatitis C virus core protein residue phenylalanine 164 increases steatosis in an in vitro cellular model. Gut 56:1302–1308 [CrossRef]
    [Google Scholar]
  13. Kalliampakou K. I., Kalamvoki M., Mavromara P. 2005; Hepatitis C virus (HCV) NS5A protein downregulates HCV IRES-dependent translation. J Gen Virol 86:1015–1025 [CrossRef]
    [Google Scholar]
  14. Krieger N., Lohmann V., Bartenschlager R. 2001; Enhancement of hepatitis C virus RNA replication by cell culture-adaptive mutations. J Virol 75:4614–4624 [CrossRef]
    [Google Scholar]
  15. Laporte J., Malet I., Andrieu T., Thibault V., Toulme J. J., Wychowski C., Pawlotsky J. M., Huraux J. M., Agut H., Cahour A. 2000; Comparative analysis of translation efficiencies of hepatitis C virus 5′ untranslated regions among intraindividual quasispecies present in chronic infection: opposite behaviors depending on cell type. J Virol 74:10827–10833 [CrossRef]
    [Google Scholar]
  16. Lonardo A., Loria P., Adinolfi L. E., Carulli N., Ruggiero G. 2006; Hepatitis C and steatosis: a reappraisal. J Viral Hepat 13:73–80 [CrossRef]
    [Google Scholar]
  17. Magiorkinis G., Ntziora F., Paraskevis D., Magiorkinis E., Hatzakis A. 2006; Analysing the evolutionary history of HCV: puzzle of ancient phylogenetic discordance. Infect Genet Evol 7:354–360
    [Google Scholar]
  18. Moriya K., Yotsuyanagi H., Shintani Y., Fujie H., Ishibashi K., Matsuura Y., Miyamura T., Koike K. 1997; Hepatitis C virus core protein induces hepatic steatosis in transgenic mice. J Gen Virol 78:1527–1531
    [Google Scholar]
  19. Motazakker M., Preikschat P., Elliott J., Smith C. A., Mills P. R., Oien K., Spence E., Elliott R. M., McCruden E. A. 2007; Translation efficiencies of the 5′-untranslated region of genotypes 1a and 3a in hepatitis C infected patients. J Med Virol 79:259–269 [CrossRef]
    [Google Scholar]
  20. National Institutes of Health 2002; National Institutes of Health Consensus Development Conference Statement: management of hepatitis C: 2002 – June 10–12, 2002. Hepatology 36:Suppl. 1S3–S20
    [Google Scholar]
  21. Reigadas S., Ventura M., Sarih-Cottin L., Castroviejo M., Litvak S., Astier-Gin T. 2001; HCV RNA-dependent RNA polymerase replicates in vitro the 3′ terminal region of the minus-strand viral RNA more efficiently than the 3′ terminal region of the plus RNA. Eur J Biochem 268:5857–5867 [CrossRef]
    [Google Scholar]
  22. Reynolds J. E., Kaminski A., Carroll A. R., Clarke B. E., Rowlands D. J., Jackson R. J. 1996; Internal initiation of translation of hepatitis C virus RNA: the ribosome entry site is at the authentic initiation codon. RNA 2:867–878
    [Google Scholar]
  23. Rijnbrand R., Bredenbeek P., van der Straaten T., Whetter L., Inchauspe G., Lemon S., Spaan W. 1995; Almost the entire 5′ non-translated region of hepatitis C virus is required for cap-independent translation. FEBS Lett 365:115–119 [CrossRef]
    [Google Scholar]
  24. Rubbia-Brandt L., Quadri R., Abid K., Giostra E., Male P.-J., Mentha G., Spahr L., Zarski J.-P., Borisch B. other authors 2000; Hepatocyte steatosis is a cytopathic effect of hepatitis C virus genotype 3. J Hepatol 33:106–115 [CrossRef]
    [Google Scholar]
  25. Rubbia-Brandt L., Fabris P., Paganin S., Leandro G., Male P.-J., Giostra E., Carlotto A., Bozzola L., Smedile A., Negro F. 2004; Steatosis affects chronic hepatitis C progression in a genotype specific way. Gut 53:406–412 [CrossRef]
    [Google Scholar]
  26. Saiz J. C., Lopez de Quinto S., Ibarrola N., Lopez-Labrador F. X., Sanchez-Tapias J. M., Rodes J., Martinez-Salas E. 1999; Internal initiation of translation efficiency in different hepatitis C genotypes isolated from interferon treated patients. Arch Virol 144:215–229 [CrossRef]
    [Google Scholar]
  27. Shaw M. L., McLauchlan J., Mills P. R., Patel A. H., McCruden E. A. 2003; Characterisation of the differences between hepatitis C virus genotype 3 and 1 glycoproteins. J Med Virol 70:361–372 [CrossRef]
    [Google Scholar]
  28. Shi S. T., Polyak S. J., Tu H., Taylor D. R., Gretch D. R., Lai M. M. C. 2002; Hepatitis C virus NS5A colocalizes with the core protein on lipid droplets and interacts with apolipoproteins. Virology 292:198–210 [CrossRef]
    [Google Scholar]
  29. Simmonds P., Bukh J., Combet C., Deleage G., Enomoto N., Feinstone S., Halfon P., Inchauspe G., Kuiken C. other authors 2005; Consensus proposals for a unified system of nomenclature of hepatitis C virus genotypes. Hepatology 42:962–973 [CrossRef]
    [Google Scholar]
  30. Smith R. M., Walton C. M., Wu C. H., Wu G. Y. 2002; Secondary structure and hybridization accessibility of hepatitis C virus 3′-terminal sequences. J Virol 76:9563–9574 [CrossRef]
    [Google Scholar]
  31. Wang C., Sarnow P., Siddiqui A. 1993; Translation of human hepatitis C virus RNA in cultured cells is mediated by an internal ribosome-binding mechanism. J Virol 67:3338–3344
    [Google Scholar]
  32. Yanagi M., St Claire M., Emerson S. U., Purcell R. H., Bukh J. 1999; In vivo analysis of the 3′ untranslated region of the hepatitis C virus after in vitro mutagenesis of an infectious cDNA clone. Proc Natl Acad Sci U S A 96:2291–2295 [CrossRef]
    [Google Scholar]
  33. Yasmeen A., Hamid S., Granath F. N., Lindstrom H., Elliott R. M., Siddiqui A. A., Persson M. A. 2006; Correlation between translation efficiency and outcome of combination therapy in chronic hepatitis C genotype 3. J Viral Hepat 13:87–95 [CrossRef]
    [Google Scholar]
  34. Yi M., Lemon S. M. 2003; 3′ Nontranslated RNA signals required for replication of hepatitis C virus RNA. J Virol 77:3557–3568 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83067-0
Loading
/content/journal/jgv/10.1099/vir.0.83067-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error