1887

Abstract

The temperate phage SfV encodes the genes responsible for the serotype conversion of strains from serotype Y to 5a. Bacteriophages often encode proteins that prevent subsequent infection by homologous phages; the mechanism by which this is accomplished is referred to as superinfection immunity. The serotype conversion mediated following lysogenization of SfV is one such mechanism. Another mechanism is the putative -like CI protein within SfV. This study reports the characterization of a third superinfection mechanism, transcription termination, in SfV. The presence of a small immunity-mediating RNA molecule, called CI RNA, and its essential role in the establishment of immunity, is shown. The novel role of the gene , located immediately downstream from the transcription termination region, in inhibiting the establishment of CI RNA-mediated immunity is also presented.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83062-0
2007-11-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/11/3187.html?itemId=/content/journal/jgv/10.1099/vir.0.83062-0&mimeType=html&fmt=ahah

References

  1. Allison, G. E., Angeles, D., Tran-Dinh, N. & Verma, N. K. ( 2002; ). Complete genomic sequence of SfV, a serotype-converting temperate bacteriophage of Shigella flexneri. J Bacteriol 184, 1974–1987.[CrossRef]
    [Google Scholar]
  2. Biere, A. L., Citron, M. & Schuster, H. ( 1992; ). Transcriptional control via translational repression by c4 antisense RNA of bacteriophages P1 and P7. Genes Dev 6, 2409–2416.[CrossRef]
    [Google Scholar]
  3. Briani, F., Zangrossi, S., Ghisotti, D. & Deho, G. ( 1996; ). A Rho-dependent transcription termination site regulated by bacteriophage P4 RNA immunity factor. Virology 223, 57–67.[CrossRef]
    [Google Scholar]
  4. Briani, F., Ghisotti, D. & Deho, G. ( 2000; ). Antisense RNA-dependent transcription termination sites that modulate lysogenic development of satellite phage P4. Mol Microbiol 36, 1124–1134.[CrossRef]
    [Google Scholar]
  5. Briani, F., Del Vecchio, E., Migliorini, D., Hajnsdorf, E., Regnier, P., Ghisotti, D. & Deho, G. ( 2002; ). RNase E and polyadenyl polymerase I are involved in maturation of CI RNA, the P4 phage immunity factor. J Mol Biol 318, 321–331.[CrossRef]
    [Google Scholar]
  6. Brown, T., Mackey, K. & Du, T. ( 2004; ). Analysis of RNA by Northern and slot blot hybridization. In Current Protocols in Molecular Biology, vol. 4, pp. 1–19. Edited by F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith & K. Struhl. Holboken, NJ: Wiley.
  7. Citron, M. & Schuster, H. ( 1990; ). The c4 repressors of bacteriophages P1 and P7 are antisense RNAs. Cell 62, 591–598.[CrossRef]
    [Google Scholar]
  8. Citron, M. & Schuster, H. ( 1992; ). The c4 repressor of bacteriophage P1 is a processed 77 base antisense RNA. Nucleic Acids Res 20, 3085–3090.[CrossRef]
    [Google Scholar]
  9. Deho, G., Zangrossi, S., Ghisotti, D. & Sironi, G. ( 1988; ). Alternative promoters in the development of bacteriophage plasmid P4. J Virol 62, 1697–1704.
    [Google Scholar]
  10. Deho, G., Zangrossi, S., Sabbattini, P., Sironi, G. & Ghisotti, D. ( 1992; ). Bacteriophage P4 immunity controlled by small RNAs via transcription termination. Mol Microbiol 6, 3415–3425.[CrossRef]
    [Google Scholar]
  11. Faubladier, M. & Bouche, J. P. ( 1994; ). Division inhibition gene dicF of Escherichia coli reveals a widespread group of prophage sequences in bacterial genomes. J Bacteriol 176, 1150–1156.
    [Google Scholar]
  12. Forti, F., Sabbattini, P., Sironi, G., Zangrossi, S., Deho, G. & Ghisotti, D. ( 1995; ). Immunity determinant of phage-plasmid P4 is a short processed RNA. J Mol Biol 249, 869–878.[CrossRef]
    [Google Scholar]
  13. Forti, F., Polo, S., Lane, K. B., Six, E. W., Sironi, G., Deho, G. & Ghisotti, D. ( 1999; ). Translation of two nested genes in bacteriophage P4 controls immunity-specific transcription termination. J Bacteriol 181, 5225–5233.
    [Google Scholar]
  14. Forti, F., Dragoni, I., Briani, F., Deho, G. & Ghisotti, D. ( 2002; ). Characterization of the small antisense CI RNA that regulates bacteriophage P4 immunity. J Mol Biol 315, 541–549.[CrossRef]
    [Google Scholar]
  15. Ghisotti, D., Chiaramonte, R., Forti, F., Zangrossi, S., Sironi, G. & Deho, G. ( 1992; ). Genetic analysis of the immunity region of phage-plasmid P4. Mol Microbiol 6, 3405–3413.[CrossRef]
    [Google Scholar]
  16. Heinrich, J., Citron, M., Gunther, A. & Schuster, H. ( 1994; ). Second-site suppressors of the bacteriophage P1 vir S mutant reveal the interdependence of the c4, icd, and ant genes in the P1 immI operon. J Bacteriol 176, 4931–4936.
    [Google Scholar]
  17. Heinrich, J., Riedel, H. D., Ruckert, B., Lurz, R. & Schuster, H. ( 1995a; ). The lytic replicon of bacteriophage P1 is controlled by an antisense RNA. Nucleic Acids Res 23, 1468–1474.[CrossRef]
    [Google Scholar]
  18. Heinrich, J., Velleman, M. & Schuster, H. ( 1995b; ). The tripartite immunity system of phages P1 and P7. FEMS Microbiol Rev 17, 121–126.[CrossRef]
    [Google Scholar]
  19. Hofer, B., Ruge, M. & Dreiseikelmann, B. ( 1995; ). The superinfection exclusion gene (sieA) of bacteriophage P22: identification and overexpression of the gene and localization of the gene product. J Bacteriol 177, 3080–3086.
    [Google Scholar]
  20. Huan, P. T., Bastin, D. A., Whittle, B. L., Lindberg, A. A. & Verma, N. K. ( 1997a; ). Molecular characterization of the genes involved in O-antigen modification, attachment, integration and excision in Shigella flexneri bacteriophage SfV. Gene 195, 217–227.[CrossRef]
    [Google Scholar]
  21. Huan, P. T., Whittle, B. L., Bastin, D. A., Lindberg, A. A. & Verma, N. K. ( 1997b; ). Shigella flexneri type-specific antigen V: cloning, sequencing and characterization of the glucosyl transferase gene of temperate bacteriophage SfV. Gene 195, 207–216.[CrossRef]
    [Google Scholar]
  22. Huttenhofer, A. & Vogel, J. ( 2006; ). Experimental approaches to identify non-coding RNAs. Nucleic Acids Res 34, 635–646.[CrossRef]
    [Google Scholar]
  23. Lindberg, A. A., Karnell, A., Stocker, B. A., Katakura, S., Sweiha, H. & Reinholt, F. P. ( 1988; ). Development of an auxotrophic oral live Shigella flexneri vaccine. Vaccine 6, 146–150.[CrossRef]
    [Google Scholar]
  24. Lu, M. J. & Henning, U. ( 1989; ). The immunity (imm) gene of Escherichia coli bacteriophage T4. J Virol 63, 3472–3478.
    [Google Scholar]
  25. Lu, M. J., Stierhof, Y. D. & Henning, U. ( 1993; ). Location and unusual membrane topology of the immunity protein of the Escherichia coli phage T4. J Virol 67, 4905–4913.
    [Google Scholar]
  26. Macpherson, D. F., Morona, R., Beger, D. W., Cheah, K. C. & Manning, P. A. ( 1991; ). Genetic analysis of the rfb region of Shigella flexneri encoding the Y serotype O-antigen specificity. Mol Microbiol 5, 1491–1499.[CrossRef]
    [Google Scholar]
  27. Maillou, J. & Dreiseikelmann, B. ( 1990; ). The sim gene of Escherichia coli phage P1: nucleotide sequence and purification of the processed protein. Virology 175, 500–507.[CrossRef]
    [Google Scholar]
  28. Majdalani, N., Vanderpool, C. K. & Gottesman, S. ( 2005; ). Bacterial small RNA regulators. Crit Rev Biochem Mol Biol 40, 93–113.[CrossRef]
    [Google Scholar]
  29. Markine-Goriaynoff, N., Gillet, L., Van Etten, J. L., Korres, H., Verma, N. & Vanderplasschen, A. ( 2004; ). Glycosyltransferases encoded by viruses. J Gen Virol 85, 2741–2754.[CrossRef]
    [Google Scholar]
  30. Mavris, M., Manning, P. A. & Morona, R. ( 1997; ). Mechanism of bacteriophage SfII-mediated serotype conversion in Shigella flexneri. Mol Microbiol 26, 939–950.[CrossRef]
    [Google Scholar]
  31. McGrath, S., Fitzgerald, G. F. & van Sinderen, D. ( 2002; ). Identification and characterization of phage-resistance genes in temperate lactococcal bacteriophages. Mol Microbiol 43, 509–520.[CrossRef]
    [Google Scholar]
  32. Oppenheim, A. B., Kobiler, O., Stavans, J., Court, D. L. & Adhya, S. ( 2005; ). Switches in bacteriophage lambda development. Annu Rev Genet 39, 409–429.[CrossRef]
    [Google Scholar]
  33. Piazza, F., Zappone, M., Sana, M., Briani, F. & Deho, G. ( 1996; ). Polynucleotide phosphorylase of Escherichia coli is required for the establishment of bacteriophage P4 immunity. J Bacteriol 178, 5513–5521.
    [Google Scholar]
  34. Ranade, K. & Poteete, A. R. ( 1993; ). Superinfection exclusion (sieB) genes of bacteriophages P22 and lambda. J Bacteriol 175, 4712–4718.
    [Google Scholar]
  35. Ravin, N. V., Svarchevsky, A. N. & Deho, G. ( 1999; ). The anti-immunity system of phage-plasmid N15: identification of the antirepressor gene and its control by a small processed RNA. Mol Microbiol 34, 980–994.[CrossRef]
    [Google Scholar]
  36. Riedel, H. D., Heinrich, J., Heisig, A., Choli, T. & Schuster, H. ( 1993a; ). The antirepressor of phage P1. Isolation and interaction with the C1 repressor of P1 and P7. FEBS Lett 334, 165–169.[CrossRef]
    [Google Scholar]
  37. Riedel, H. D., Heinrich, J. & Schuster, H. ( 1993b; ). Cloning, expression, and characterization of the icd gene in the immI operon of bacteriophage P1. J Bacteriol 175, 2833–2838.
    [Google Scholar]
  38. Sabbattini, P., Forti, F., Ghisotti, D. & Deho, G. ( 1995; ). Control of transcription termination by an RNA factor in bacteriophage P4 immunity: identification of the target sites. J Bacteriol 177, 1425–1434.
    [Google Scholar]
  39. Sambrook, J. & Russell, D. W. ( 2001; ). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
  40. Simmons, D. A. & Romanowska, E. ( 1987; ). Structure and biology of Shigella flexneri O antigens. J Med Microbiol 23, 289–302.[CrossRef]
    [Google Scholar]
  41. Storz, G., Altuvia, S. & Wassarman, K. M. ( 2005; ). An abundance of RNA regulators. Annu Rev Biochem 74, 199–217.[CrossRef]
    [Google Scholar]
  42. Storz, G., Opdyke, J. A. & Wassarman, K. M. ( 2006; ). Regulating bacterial transcription with small RNAs. Cold Spring Harb Symp Quant Biol 71, 269–273.[CrossRef]
    [Google Scholar]
  43. Sung, K., Khan, S. A., Nawaz, M. S. & Khan, A. A. ( 2003; ). A simple and efficient Triton X-100 boiling and chloroform extraction method of RNA isolation from Gram-positive and Gram-negative bacteria. FEMS Microbiol Lett 229, 97–101.[CrossRef]
    [Google Scholar]
  44. Susskind, M. M., Wright, A. & Botstein, D. ( 1971; ). Superinfection exclusion by P22 prophage in lysogens of Salmonella typhimurium. II. Genetic evidence for two exclusion systems. Virology 45, 638–652.[CrossRef]
    [Google Scholar]
  45. Susskind, M. M., Botstein, D. & Wright, A. ( 1974; ). Superinfection exclusion by P22 prophage in lysogens of Salmonella typhimurium. III. Failure of superinfecting phage DNA to enter sieA+ lysogens. Virology 62, 350–366.[CrossRef]
    [Google Scholar]
  46. Vander Byl, C. & Kropinski, A. M. ( 2000; ). Sequence of the genome of Salmonella bacteriophage P22. J Bacteriol 182, 6472–6481.[CrossRef]
    [Google Scholar]
  47. Yanisch-Perron, C., Vieira, J. & Messing, J. ( 1985; ). Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33, 103–119.[CrossRef]
    [Google Scholar]
  48. Zuker, M., Mathews, D. H. & Turner, D. H. ( 1999; ). Algorithms and thermodynamics for RNA secondary structure prediction: a practical guide. In RNA Biochemistry and Biotechnology, pp. 11–43. Edited by J. Barciszewski & B. F. C. Clark. Dordrecht, The Netherlands: Kluwer.
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83062-0
Loading
/content/journal/jgv/10.1099/vir.0.83062-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error