1887

Abstract

Classical swine fever virus (CSFV)–macrophage interactions during infection were analysed by examining macrophage transcriptional responses via microarray. Eleven genes had increased mRNA levels (>2.5-fold, <0.05) in infected cell cultures, including arginase-1, an inhibitor of nitric oxide production, phosphoinositide 3-kinase, chemokine receptor 4 and interleukin-1. Lower levels of nitric oxide and increased arginase activity were found in CSFV-infected macrophages. These changes in gene expression in macrophages suggest viral modulation of host expression to suppress nitric oxide production.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83042-0
2007-11-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/11/3007.html?itemId=/content/journal/jgv/10.1099/vir.0.83042-0&mimeType=html&fmt=ahah

References

  1. Afonso, C. L., Piccone, M. E., Zaffuto, K. M., Neilan, J., Kutish, G. F., Lu, Z., Balinsky, C. A., Gibb, T. R., Bean, T. J. & other authors ( 2004; ). African swine fever virus multigene family 360 and 530 genes affect host interferon response. J Virol 78, 1858–1864.[CrossRef]
    [Google Scholar]
  2. Akerstrom, S., Mousavi-Jazi, M., Klingstrom, J., Leijon, M., Lundkvist, A. & Mirazimi, A. ( 2005; ). Nitric oxide inhibits the replication cycle of severe acute respiratory syndrome coronavirus. J Virol 79, 1966–1969.[CrossRef]
    [Google Scholar]
  3. Bonaparte, K. L., Hudson, C. A., Wu, C. & Massa, P. T. ( 2006; ). Inverse regulation of inducible nitric oxide synthase (iNOS) and arginase I by the protein tyrosine phosphatase SHP-1 in CNS glia. Glia 53, 827–835.[CrossRef]
    [Google Scholar]
  4. Bonina, L., Nash, A. A., Arena, A., Leung, K. N. & Wildy, P. ( 1984; ). T cell-macrophage interaction in arginase-mediated resistance to herpes simplex virus. Virus Res 1, 501–505.[CrossRef]
    [Google Scholar]
  5. Boucher, J. L., Moali, C. & Tenu, J. P. ( 1999; ). Nitric oxide biosynthesis, nitric oxide synthase inhibitors and arginase competition for l-arginine utilization. Cell Mol Life Sci 55, 1015–1028.[CrossRef]
    [Google Scholar]
  6. Campadelli-Fiume, G., Scannavini, M., Falasca, A., Hakim, G., Busi, C., Mattioli, A. & Fiume, L. ( 1981; ). Reduction of simian virus 40 growth by a mitotic inhibitor extracted from liver. Evidence that the inhibitor is arginase. Ann Sclavo 23, 162–168.
    [Google Scholar]
  7. Chang, C. I., Liao, J. C. & Kuo, L. ( 1998; ). Arginase modulates nitric oxide production in activated macrophages. Am J Physiol 274, H342–H348.
    [Google Scholar]
  8. Charnsilpa, W., Takhampunya, R., Endy, T. P., Mammen, M. P., Jr, Libraty, D. H. & Ubol, S. ( 2005; ). Nitric oxide radical suppresses replication of wild-type dengue 2 viruses in vitro. J Med Virol 77, 89–95.[CrossRef]
    [Google Scholar]
  9. Chun, S. Y., Eisenhauer, K. M., Kubo, M. & Hsueh, A. J. ( 1995; ). Interleukin-1 beta suppresses apoptosis in rat ovarian follicles by increasing nitric oxide production. Endocrinology 136, 3120–3127.
    [Google Scholar]
  10. Corraliza, I. M., Campo, M. L., Soler, G. & Modolell, M. ( 1994; ). Determination of arginase activity in macrophages: a micromethod. J Immunol Methods 174, 231–235.[CrossRef]
    [Google Scholar]
  11. Cronshaw, D. G., Owen, C., Brown, Z. & Ward, S. G. ( 2004; ). Activation of phosphoinositide 3-kinases by the CCR4 ligand macrophage-derived chemokine is a dispensable signal for T lymphocyte chemotaxis. J Immunol 172, 7761–7770.[CrossRef]
    [Google Scholar]
  12. Edwards, S., Moennig, V. & Wensvoort, G. ( 1991; ). The development of an international reference panel of monoclonal antibodies for the differentiation of hog cholera virus from other pestiviruses. Vet Microbiol 29, 101–108.[CrossRef]
    [Google Scholar]
  13. Francki, R. I. B., Fauquet, C. M., Knudson, D. L. & Brown, F. ( 1991; ). Classification and nomenclature of viruses (fifth report of the International Committee on the Taxonomy of Viruses). Arch Virol Suppl 2, 223–233.
    [Google Scholar]
  14. Genovesi, E. V., Villinger, F., Gerstner, D. J., Whyard, T. C. & Knudsen, R. C. ( 1990; ). Effect of macrophage-specific colony-stimulating factor (CSF-1) on swine monocyte/macrophage susceptibility to in vitro infection by African swine fever virus. Vet Microbiol 25, 153–176.[CrossRef]
    [Google Scholar]
  15. Gobert, A. P., McGee, D. J., Akhtar, M., Mendz, G. L., Newton, J. C., Cheng, Y., Mobley, H. L. & Wilson, K. T. ( 2001; ). Helicobacter pylori arginase inhibits nitric oxide production by eukaryotic cells: a strategy for bacterial survival. Proc Natl Acad Sci U S A 98, 13844–13849.[CrossRef]
    [Google Scholar]
  16. Goldmann, O., von Kockritz-Blickwede, M., Holtje, C., Chhatwal, G. S., Geffers, R. & Medina, E. ( 2007; ). Transcriptome analysis of murine macrophages in response to infection with Streptococcus pyogenes reveals an unusual activation program. Infect Immun 75, 4148–4157.[CrossRef]
    [Google Scholar]
  17. Harlow, E. & Lane, D. ( 1988; ). Antibodies: a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
  18. Knoetig, S. M., Summerfield, A., Spagnuolo-Weaver, M. & McCullough, K. C. ( 1999; ). Immunopathogenesis of classical swine fever: role of monocytic cells. Immunology 97, 359–366.[CrossRef]
    [Google Scholar]
  19. Lee, C. H., Choi, Y. H., Yang, S. H., Lee, C. W., Ha, S. J. & Sung, Y. C. ( 2001; ). Hepatitis C virus core protein inhibits interleukin 12 and nitric oxide production from activated macrophages. Virology 279, 271–279.[CrossRef]
    [Google Scholar]
  20. Lin, Y. L., Huang, Y. L., Ma, S. H., Yeh, C. T., Chiou, S. Y., Chen, L. K. & Liao, C. L. ( 1997; ). Inhibition of Japanese encephalitis virus infection by nitric oxide: antiviral effect of nitric oxide on RNA virus replication. J Virol 71, 5227–5235.
    [Google Scholar]
  21. Maarsingh, H., Leusink, J., Bos, I. S., Zaagsma, J. & Meurs, H. ( 2006; ). Arginase strongly impairs neuronal nitric oxide-mediated airway smooth muscle relaxation in allergic asthma. Respir Res 7, 6 [CrossRef]
    [Google Scholar]
  22. Nistri, S., Mazzetti, L., Failli, P. & Bani, D. ( 2002; ). High-yield method for isolation and culture of endothelial cells from rat coronary blood vessels suitable for analysis of intracellular calcium and nitric oxide biosynthetic pathways. Biol Proced Online 4, 32–37.[CrossRef]
    [Google Scholar]
  23. Noel, W., Raes, G., Hassanzadeh, G. G., De Baetselier, P. & Beschin, A. ( 2004; ). Alternatively activated macrophages during parasite infections. Trends Parasitol 20, 126–133.[CrossRef]
    [Google Scholar]
  24. Obermeier, F., Gross, V., Scholmerich, J. & Falk, W. ( 1999; ). Interleukin-1 production by mouse macrophages is regulated in a feedback fashion by nitric oxide. J Leukoc Biol 66, 829–836.
    [Google Scholar]
  25. Paton, D. J. & Greiser-Wilke, I. ( 2003; ). Classical swine fever – an update. Res Vet Sci 75, 169–178.[CrossRef]
    [Google Scholar]
  26. Pertile, T. L., Karaca, K., Sharma, J. M. & Walser, M. M. ( 1996; ). An antiviral effect of nitric oxide: inhibition of reovirus replication. Avian Dis 40, 342–348.[CrossRef]
    [Google Scholar]
  27. Rauh, M. J., Sly, L. M., Kalesnikoff, J., Hughes, M. R., Cao, L. P., Lam, V. & Krystal, G. ( 2004; ). The role of SHIP1 in macrophage programming and activation. Biochem Soc Trans 32, 785–788.[CrossRef]
    [Google Scholar]
  28. Rauh, M. J., Ho, V., Pereira, C., Sham, A., Sly, L. M., Lam, V., Huxham, L., Minchinton, A. I., Mui, A. & Krystal, G. ( 2005; ). SHIP represses the generation of alternatively activated macrophages. Immunity 23, 361–374.[CrossRef]
    [Google Scholar]
  29. Rice, C. M. ( 1996; ). Flaviviridae: the viruses and their replication. In Fields Virology, 3rd edn, pp. 931–959. Edited by D. M. Knipe, B. N. Fields & P. M. Howley. Philadelphia, PA: Lippincott–Raven.
  30. Risatti, G. R., Borca, M. V., Kutish, G. F., Lu, Z., Holinka, L. G., French, R. A., Tulman, E. R. & Rock, D. L. ( 2005; ). The E2 glycoprotein of classical swine fever virus is a virulence determinant in swine. J Virol 79, 3787–3796.[CrossRef]
    [Google Scholar]
  31. Rodriguez-Sosa, M., Satoskar, A. R., Calderon, R., Gomez-Garcia, L., Saavedra, R., Bojalil, R. & Terrazas, L. I. ( 2002; ). Chronic helminth infection induces alternatively activated macrophages expressing high levels of CCR5 with low interleukin-12 production and Th2-biasing ability. Infect Immun 70, 3656–3664.[CrossRef]
    [Google Scholar]
  32. Rogers, S. ( 1959; ). Induction of arginase in rabbit epithelium by the Shope rabbit papilloma virus. Nature 183, 1815–1816.
    [Google Scholar]
  33. Torre, D., Pugliese, A. & Speranza, F. ( 2002; ). Role of nitric oxide in HIV-1 infection: friend or foe?. Lancet Infect Dis 2, 273–280.[CrossRef]
    [Google Scholar]
  34. Xing, Z. & Schat, K. A. ( 2000; ). Inhibitory effects of nitric oxide and gamma interferon on in vitro and in vivo replication of Marek's disease virus. J Virol 74, 3605–3612.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83042-0
Loading
/content/journal/jgv/10.1099/vir.0.83042-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error