1887

Abstract

Classical swine fever virus (CSFV)–macrophage interactions during infection were analysed by examining macrophage transcriptional responses via microarray. Eleven genes had increased mRNA levels (>2.5-fold, <0.05) in infected cell cultures, including arginase-1, an inhibitor of nitric oxide production, phosphoinositide 3-kinase, chemokine receptor 4 and interleukin-1. Lower levels of nitric oxide and increased arginase activity were found in CSFV-infected macrophages. These changes in gene expression in macrophages suggest viral modulation of host expression to suppress nitric oxide production.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83042-0
2007-11-01
2021-08-01
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/11/3007.html?itemId=/content/journal/jgv/10.1099/vir.0.83042-0&mimeType=html&fmt=ahah

References

  1. Afonso C. L., Piccone M. E., Zaffuto K. M., Neilan J., Kutish G. F., Lu Z., Balinsky C. A., Gibb T. R., Bean T. J. other authors 2004; African swine fever virus multigene family 360 and 530 genes affect host interferon response. J Virol 78:1858–1864 [CrossRef]
    [Google Scholar]
  2. Akerstrom S., Mousavi-Jazi M., Klingstrom J., Leijon M., Lundkvist A., Mirazimi A. 2005; Nitric oxide inhibits the replication cycle of severe acute respiratory syndrome coronavirus. J Virol 79:1966–1969 [CrossRef]
    [Google Scholar]
  3. Bonaparte K. L., Hudson C. A., Wu C., Massa P. T. 2006; Inverse regulation of inducible nitric oxide synthase (iNOS) and arginase I by the protein tyrosine phosphatase SHP-1 in CNS glia. Glia 53:827–835 [CrossRef]
    [Google Scholar]
  4. Bonina L., Nash A. A., Arena A., Leung K. N., Wildy P. 1984; T cell-macrophage interaction in arginase-mediated resistance to herpes simplex virus. Virus Res 1:501–505 [CrossRef]
    [Google Scholar]
  5. Boucher J. L., Moali C., Tenu J. P. 1999; Nitric oxide biosynthesis, nitric oxide synthase inhibitors and arginase competition for l-arginine utilization. Cell Mol Life Sci 55:1015–1028 [CrossRef]
    [Google Scholar]
  6. Campadelli-Fiume G., Scannavini M., Falasca A., Hakim G., Busi C., Mattioli A., Fiume L. 1981; Reduction of simian virus 40 growth by a mitotic inhibitor extracted from liver. Evidence that the inhibitor is arginase. Ann Sclavo 23:162–168
    [Google Scholar]
  7. Chang C. I., Liao J. C., Kuo L. 1998; Arginase modulates nitric oxide production in activated macrophages. Am J Physiol 274:H342–H348
    [Google Scholar]
  8. Charnsilpa W., Takhampunya R., Endy T. P., Mammen M. P. Jr, Libraty D. H., Ubol S. 2005; Nitric oxide radical suppresses replication of wild-type dengue 2 viruses in vitro. J Med Virol 77:89–95 [CrossRef]
    [Google Scholar]
  9. Chun S. Y., Eisenhauer K. M., Kubo M., Hsueh A. J. 1995; Interleukin-1 beta suppresses apoptosis in rat ovarian follicles by increasing nitric oxide production. Endocrinology 136:3120–3127
    [Google Scholar]
  10. Corraliza I. M., Campo M. L., Soler G., Modolell M. 1994; Determination of arginase activity in macrophages: a micromethod. J Immunol Methods 174:231–235 [CrossRef]
    [Google Scholar]
  11. Cronshaw D. G., Owen C., Brown Z., Ward S. G. 2004; Activation of phosphoinositide 3-kinases by the CCR4 ligand macrophage-derived chemokine is a dispensable signal for T lymphocyte chemotaxis. J Immunol 172:7761–7770 [CrossRef]
    [Google Scholar]
  12. Edwards S., Moennig V., Wensvoort G. 1991; The development of an international reference panel of monoclonal antibodies for the differentiation of hog cholera virus from other pestiviruses. Vet Microbiol 29:101–108 [CrossRef]
    [Google Scholar]
  13. Francki R. I. B., Fauquet C. M., Knudson D. L., Brown F. 1991; Classification and nomenclature of viruses (fifth report of the International Committee on the Taxonomy of Viruses). Arch Virol Suppl 2:223–233
    [Google Scholar]
  14. Genovesi E. V., Villinger F., Gerstner D. J., Whyard T. C., Knudsen R. C. 1990; Effect of macrophage-specific colony-stimulating factor (CSF-1) on swine monocyte/macrophage susceptibility to in vitro infection by African swine fever virus. Vet Microbiol 25:153–176 [CrossRef]
    [Google Scholar]
  15. Gobert A. P., McGee D. J., Akhtar M., Mendz G. L., Newton J. C., Cheng Y., Mobley H. L., Wilson K. T. 2001; Helicobacter pylori arginase inhibits nitric oxide production by eukaryotic cells: a strategy for bacterial survival. Proc Natl Acad Sci U S A 98:13844–13849 [CrossRef]
    [Google Scholar]
  16. Goldmann O., von Kockritz-Blickwede M., Holtje C., Chhatwal G. S., Geffers R., Medina E. 2007; Transcriptome analysis of murine macrophages in response to infection with Streptococcus pyogenes reveals an unusual activation program. Infect Immun 75:4148–4157 [CrossRef]
    [Google Scholar]
  17. Harlow E., Lane D. 1988 Antibodies: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  18. Knoetig S. M., Summerfield A., Spagnuolo-Weaver M., McCullough K. C. 1999; Immunopathogenesis of classical swine fever: role of monocytic cells. Immunology 97:359–366 [CrossRef]
    [Google Scholar]
  19. Lee C. H., Choi Y. H., Yang S. H., Lee C. W., Ha S. J., Sung Y. C. 2001; Hepatitis C virus core protein inhibits interleukin 12 and nitric oxide production from activated macrophages. Virology 279:271–279 [CrossRef]
    [Google Scholar]
  20. Lin Y. L., Huang Y. L., Ma S. H., Yeh C. T., Chiou S. Y., Chen L. K., Liao C. L. 1997; Inhibition of Japanese encephalitis virus infection by nitric oxide: antiviral effect of nitric oxide on RNA virus replication. J Virol 71:5227–5235
    [Google Scholar]
  21. Maarsingh H., Leusink J., Bos I. S., Zaagsma J., Meurs H. 2006; Arginase strongly impairs neuronal nitric oxide-mediated airway smooth muscle relaxation in allergic asthma. Respir Res 7:6 [CrossRef]
    [Google Scholar]
  22. Nistri S., Mazzetti L., Failli P., Bani D. 2002; High-yield method for isolation and culture of endothelial cells from rat coronary blood vessels suitable for analysis of intracellular calcium and nitric oxide biosynthetic pathways. Biol Proced Online 4:32–37 [CrossRef]
    [Google Scholar]
  23. Noel W., Raes G., Hassanzadeh G. G., De Baetselier P., Beschin A. 2004; Alternatively activated macrophages during parasite infections. Trends Parasitol 20:126–133 [CrossRef]
    [Google Scholar]
  24. Obermeier F., Gross V., Scholmerich J., Falk W. 1999; Interleukin-1 production by mouse macrophages is regulated in a feedback fashion by nitric oxide. J Leukoc Biol 66:829–836
    [Google Scholar]
  25. Paton D. J., Greiser-Wilke I. 2003; Classical swine fever – an update. Res Vet Sci 75:169–178 [CrossRef]
    [Google Scholar]
  26. Pertile T. L., Karaca K., Sharma J. M., Walser M. M. 1996; An antiviral effect of nitric oxide: inhibition of reovirus replication. Avian Dis 40:342–348 [CrossRef]
    [Google Scholar]
  27. Rauh M. J., Sly L. M., Kalesnikoff J., Hughes M. R., Cao L. P., Lam V., Krystal G. 2004; The role of SHIP1 in macrophage programming and activation. Biochem Soc Trans 32:785–788 [CrossRef]
    [Google Scholar]
  28. Rauh M. J., Ho V., Pereira C., Sham A., Sly L. M., Lam V., Huxham L., Minchinton A. I., Mui A., Krystal G. 2005; SHIP represses the generation of alternatively activated macrophages. Immunity 23:361–374 [CrossRef]
    [Google Scholar]
  29. Rice C. M. 1996; Flaviviridae : the viruses and their replication. In Fields Virology , 3rd edn. pp 931–959 Edited by Knipe D. M., Fields B. N., Howley P. M. Philadelphia, PA: Lippincott–Raven;
    [Google Scholar]
  30. Risatti G. R., Borca M. V., Kutish G. F., Lu Z., Holinka L. G., French R. A., Tulman E. R., Rock D. L. 2005; The E2 glycoprotein of classical swine fever virus is a virulence determinant in swine. J Virol 79:3787–3796 [CrossRef]
    [Google Scholar]
  31. Rodriguez-Sosa M., Satoskar A. R., Calderon R., Gomez-Garcia L., Saavedra R., Bojalil R., Terrazas L. I. 2002; Chronic helminth infection induces alternatively activated macrophages expressing high levels of CCR5 with low interleukin-12 production and Th2-biasing ability. Infect Immun 70:3656–3664 [CrossRef]
    [Google Scholar]
  32. Rogers S. 1959; Induction of arginase in rabbit epithelium by the Shope rabbit papilloma virus. Nature 183:1815–1816
    [Google Scholar]
  33. Torre D., Pugliese A., Speranza F. 2002; Role of nitric oxide in HIV-1 infection: friend or foe?. Lancet Infect Dis 2:273–280 [CrossRef]
    [Google Scholar]
  34. Xing Z., Schat K. A. 2000; Inhibitory effects of nitric oxide and gamma interferon on in vitro and in vivo replication of Marek's disease virus. J Virol 74:3605–3612 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83042-0
Loading
/content/journal/jgv/10.1099/vir.0.83042-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error