1887

Abstract

Dengue is caused by a taxonomic group of four viruses, dengue virus types 1–4 (DENV1–DENV4). A molecular understanding of the antibody-mediated protection against this disease is critical to design safe vaccines and therapeutics. Here, the energetic epitope of antibody mAb4E11, which neutralizes the four serotypes of DENV but no other flavivirus, and binds domain 3 (ED3) of their envelope glycoprotein, was characterized. Alanine-scanning mutagenesis of the ED3 domain from serotype DENV1 was performed and the affinities between the mutant domains and the Fab fragment of mAb4E11 were measured. The epitope residues (307–312, 387, 389 and 391) were at the edges of two distinct -sheets. Four residues constituted hot spots of binding energy. They were aliphatic and contributed to form a hydrophobic pocket (Leu308, Leu389), or were positively charged (Lys307, Lys310). They may bind the diversity residues of mAb4E11, H-Trp96-Glu97. Remarkably, cyclic residues occupy and block the hydrophobic pocket in all unrelated flaviviruses. Transplanting the epitope from the ED3 domain of DENV into those of other flaviviruses restored affinity. The epitope straddles residues of ED3 that are involved in virulence, e.g. Asn/Asp390. These results define the epitope of mAb4E11 as an antigenic signature of the DENV group and suggest mechanisms for its neutralization potency.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83028-0
2007-09-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/9/2387.html?itemId=/content/journal/jgv/10.1099/vir.0.83028-0&mimeType=html&fmt=ahah

References

  1. Beasley, D. W. & Barrett, A. D. ( 2002; ). Identification of neutralizing epitopes within structural domain III of the West Nile virus envelope protein. J Virol 76, 13097–13100.[CrossRef]
    [Google Scholar]
  2. Bedouelle, H., Belkadi, L., England, P., Guijarro, J. I., Lisova, O., Urvoas, A., Delepierre, M. & Thullier, P. ( 2006; ). Diversity and junction residues as hotspots of binding energy in an antibody neutralizing the dengue virus. FEBS J 273, 34–46.[CrossRef]
    [Google Scholar]
  3. Bendtsen, J. D., Nielsen, H., von Heijne, G. & Brunak, S. ( 2004; ). Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340, 783–795.[CrossRef]
    [Google Scholar]
  4. Bhardwaj, S., Holbrook, M., Shope, R. E., Barrett, A. D. & Watowich, S. J. ( 2001; ). Biophysical characterization and vector-specific antagonist activity of domain III of the tick-borne flavivirus envelope protein. J Virol 75, 4002–4007.[CrossRef]
    [Google Scholar]
  5. Buchen-Osmond, C. ( 2003; ). The universal virus database ICTVdB. Comput Sci Eng 5, 16–25.
    [Google Scholar]
  6. Carter, P., Bedouelle, H. & Winter, G. ( 1985; ). Improved oligonucleotide site-directed mutagenesis using M13 vectors. Nucleic Acids Res 13, 4431–4443.[CrossRef]
    [Google Scholar]
  7. Catteau, A., Kalinina, O., Wagner, M. C., Deubel, V., Courageot, M. P. & Despres, P. ( 2003; ). Dengue virus M protein contains a proapoptotic sequence referred to as ApoptoM. J Gen Virol 84, 2781–2793.[CrossRef]
    [Google Scholar]
  8. Cecilia, D. & Gould, E. A. ( 1991; ). Nucleotide changes responsible for loss of neuroinvasiveness in Japanese encephalitis virus neutralization-resistant mutants. Virology 181, 70–77.[CrossRef]
    [Google Scholar]
  9. Chambers, T. J., Halevy, M., Nestorowicz, A., Rice, C. M. & Lustig, S. ( 1998; ). West Nile virus envelope proteins: nucleotide sequence analysis of strains differing in mouse neuroinvasiveness. J Gen Virol 79, 2375–2380.
    [Google Scholar]
  10. Chen, Y., Maguire, T., Hileman, R. E., Fromm, J. R., Esko, J. D., Linhardt, R. J. & Marks, R. M. ( 1997; ). Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate. Nat Med 3, 866–871.[CrossRef]
    [Google Scholar]
  11. Creighton, T. E. ( 1989; ). Disulphide bonds between cysteine residues. In Protein Structure: a Practical Approach, pp. 155–168. Edited by T. E. Creighton. Oxford: IRL Press.
  12. Crill, W. D. & Roehrig, J. T. ( 2001; ). Monoclonal antibodies that bind to domain III of dengue virus E glycoprotein are the most efficient blockers of virus adsorption to Vero cells. J Virol 75, 7769–7773.[CrossRef]
    [Google Scholar]
  13. Friguet, B., Chaffotte, A. F., Djavadi-Ohaniance, L. & Goldberg, M. E. ( 1985; ). Measurements of the true affinity constant in solution of antigen-antibody complexes by enzyme-linked immunosorbent assay. J Immunol Methods 77, 305–319.[CrossRef]
    [Google Scholar]
  14. Gao, G. F., Hussain, M. H., Reid, H. W. & Gould, E. A. ( 1994; ). Identification of naturally occurring monoclonal antibody escape variants of louping ill virus. J Gen Virol 75, 609–614.[CrossRef]
    [Google Scholar]
  15. Goncalvez, A. P., Purcell, R. H. & Lai, C. J. ( 2004; ). Epitope determinants of a chimpanzee Fab antibody that efficiently cross-neutralizes dengue type 1 and type 2 viruses map to inside and in close proximity to fusion loop of the dengue type 2 virus envelope glycoprotein. J Virol 78, 12919–12928.[CrossRef]
    [Google Scholar]
  16. Greenspan, N. S. & Di Cera, E. ( 1999; ). Defining epitopes: it's not as easy as it seems. Nat Biotechnol 17, 936–937.[CrossRef]
    [Google Scholar]
  17. Gubler, D. J. ( 2002; ). Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends Microbiol 10, 100–103.[CrossRef]
    [Google Scholar]
  18. Guzman, M. G. & Kouri, G. ( 2002; ). Dengue: an update. Lancet Infect Dis 2, 33–42.[CrossRef]
    [Google Scholar]
  19. Halstead, S. B. ( 2003; ). Neutralization and antibody-dependent enhancement of dengue viruses. Adv Virus Res 60, 421–467.
    [Google Scholar]
  20. Harlow, E. & Lane, D. ( 1988; ). Antibodies: a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  21. Heinz, F. X., Collett, M. S., Purcell, R. H., Gould, E. A., Howard, C. R., Houghton, M., Moormann, R. J. M., Rice, C. M. & Thiel, H. J. ( 2000; ). Family Flaviviridae. In Virus Taxonomy: Seventh Report of the International Committee on Taxonomy of Viruses, pp. 859–878. Edited by M. V. E. van Regenmortel, C. M. Fauquet, D. H. L. Bishop, E. B. Carstens, M. K. Estes, S. M. Lemon, J. Maniloff, M. A. Mayo, D. J. McGeoch, C. R. Pringle & R. B. Wickner. San Diego, CA: Academic Press.
  22. Hiramatsu, K., Tadano, M., Men, R. & Lai, C. J. ( 1996; ). Mutational analysis of a neutralization epitope on the dengue type 2 virus (DEN2) envelope protein: monoclonal antibody resistant DEN2/DEN4 chimeras exhibit reduced mouse neurovirulence. Virology 224, 437–445.[CrossRef]
    [Google Scholar]
  23. Holzmann, H., Heinz, F. X., Mandl, C. W., Guirakhoo, F. & Kunz, C. ( 1990; ). A single amino acid substitution in envelope protein E of tick-borne encephalitis virus leads to attenuation in the mouse model. J Virol 64, 5156–5159.
    [Google Scholar]
  24. Hung, J. J., Hsieh, M. T., Young, M. J., Kao, C. L., King, C. C. & Chang, W. ( 2004; ). An external loop region of domain III of dengue virus type 2 envelope protein is involved in serotype-specific binding to mosquito but not mammalian cells. J Virol 78, 378–388.[CrossRef]
    [Google Scholar]
  25. Jennings, A. D., Gibson, C. A., Miller, B. R., Mathews, J. H., Mitchell, C. J., Roehrig, J. T., Wood, D. J., Taffs, F., Sil, B. K. & other authors ( 1994; ). Analysis of a yellow fever virus isolated from a fatal case of vaccine-associated human encephalitis. J Infect Dis 169, 512–518.[CrossRef]
    [Google Scholar]
  26. Jiang, W. R., Lowe, A., Higgs, S., Reid, H. & Gould, E. A. ( 1993; ). Single amino acid codon changes detected in louping ill virus antibody-resistant mutants with reduced neurovirulence. J Gen Virol 74, 931–935.[CrossRef]
    [Google Scholar]
  27. Jiang, W., Bonnert, T. P., Venugopal, K. & Gould, E. A. ( 1994; ). A single chain antibody fragment expressed in bacteria neutralizes tick-borne flaviviruses. Virology 200, 21–28.[CrossRef]
    [Google Scholar]
  28. Kanai, R., Kar, K., Anthony, K., Gould, L. H., Ledizet, M., Fikrig, E., Marasco, W. A., Koski, R. A. & Modis, Y. ( 2006; ). Crystal structure of West Nile virus envelope glycoprotein reveals viral surface epitopes. J Virol 80, 11000–11008.[CrossRef]
    [Google Scholar]
  29. Kunkel, T. A., Roberts, J. D. & Zakour, R. A. ( 1987; ). Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol 154, 367–382.
    [Google Scholar]
  30. Leitmeyer, K. C., Vaughn, D. W., Watts, D. M., Salas, R., Villalobos, I., de Chacon, Ramos, C. & Rico-Hesse, R. ( 1999; ). Dengue virus structural differences that correlate with pathogenesis. J Virol 73, 4738–4747.
    [Google Scholar]
  31. Li, L., Barrett, A. D. & Beasley, D. W. ( 2005; ). Differential expression of domain III neutralizing epitopes on the envelope proteins of West Nile virus strains. Virology 335, 99–105.[CrossRef]
    [Google Scholar]
  32. Lin, C. W. & Wu, S. C. ( 2003; ). A functional epitope determinant on domain III of the Japanese encephalitis virus envelope protein interacted with neutralizing-antibody combining sites. J Virol 77, 2600–2606.[CrossRef]
    [Google Scholar]
  33. Lin, B., Parrish, C. R., Murray, J. M. & Wright, P. J. ( 1994; ). Localization of a neutralizing epitope on the envelope protein of dengue virus type 2. Virology 202, 885–890.[CrossRef]
    [Google Scholar]
  34. Lok, S. M., Ng, M. L. & Aaskov, J. ( 2001; ). Amino acid and phenotypic changes in dengue 2 virus associated with escape from neutralisation by IgM antibody. J Med Virol 65, 315–323.[CrossRef]
    [Google Scholar]
  35. Mandl, C. W., Guirakhoo, F., Holzmann, H., Heinz, F. X. & Kunz, C. ( 1989; ). Antigenic structure of the flavivirus envelope protein E at the molecular level, using tick-borne encephalitis virus as a model. J Virol 63, 564–571.
    [Google Scholar]
  36. Megret, F., Hugnot, J. P., Falconar, A., Gentry, M. K., Morens, D. M., Murray, J. M., Schlesinger, J. J., Wright, P. J., Young, P. & other authors ( 1992; ). Use of recombinant fusion proteins and monoclonal antibodies to define linear and discontinuous antigenic sites on the dengue virus envelope glycoprotein. Virology 187, 480–491.[CrossRef]
    [Google Scholar]
  37. Modis, Y., Ogata, S., Clements, D. & Harrison, S. C. ( 2003; ). A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc Natl Acad Sci U S A 100, 6986–6991.[CrossRef]
    [Google Scholar]
  38. Modis, Y., Ogata, S., Clements, D. & Harrison, S. C. ( 2004; ). Structure of the dengue virus envelope protein after membrane fusion. Nature 427, 313–319.[CrossRef]
    [Google Scholar]
  39. Modis, Y., Ogata, S., Clements, D. & Harrison, S. C. ( 2005; ). Variable surface epitopes in the crystal structure of dengue virus type 3 envelope glycoprotein. J Virol 79, 1223–1231.[CrossRef]
    [Google Scholar]
  40. Mongkolsapaya, J., Dejnirattisai, W., Xu, X. N., Vasanawathana, S., Tangthawornchaikul, N., Chairunsri, A., Sawasdivorn, S., Duangchinda, T., Dong, T. & other authors ( 2003; ). Original antigenic sin and apoptosis in the pathogenesis of dengue hemorrhagic fever. Nat Med 9, 921–927.[CrossRef]
    [Google Scholar]
  41. Monsellier, E. & Bedouelle, H. ( 2005; ). Quantitative measurement of protein stability from unfolding equilibria monitored with the fluorescence maximum wavelength. Protein Eng Des Sel 18, 445–456.[CrossRef]
    [Google Scholar]
  42. Navarro-Sanchez, E., Altmeyer, R., Amara, A., Schwartz, O., Fieschi, F., Virelizier, J. L., Arenzana-Seisdedos, F. & Despres, P. ( 2003; ). Dendritic-cell-specific ICAM3-grabbing non-integrin is essential for the productive infection of human dendritic cells by mosquito-cell-derived dengue viruses. EMBO Rep 4, 723–728.[CrossRef]
    [Google Scholar]
  43. Niedrig, M., Klockmann, U., Lang, W., Roeder, J., Burk, S., Modrow, S. & Pauli, G. ( 1994; ). Monoclonal antibodies directed against tick-borne encephalitis virus with neutralizing activity in vivo. Acta Virol 38, 141–149.
    [Google Scholar]
  44. Nybakken, G. E., Oliphant, T., Johnson, S., Burke, S., Diamond, M. S. & Fremont, D. H. ( 2005; ). Structural basis of West Nile virus neutralization by a therapeutic antibody. Nature 437, 764–769.[CrossRef]
    [Google Scholar]
  45. Oliphant, T., Engle, M., Nybakken, G. E., Doane, C., Johnson, S., Huang, L., Gorlatov, S., Mehlhop, E., Marri, A. & other authors ( 2005; ). Development of a humanized monoclonal antibody with therapeutic potential against West Nile virus. Nat Med 11, 522–530.[CrossRef]
    [Google Scholar]
  46. Pace, C. N., Vajdos, F., Fee, L., Grimsley, G. & Gray, T. ( 1995; ). How to measure and predict the molar absorption coefficient of a protein. Protein Sci 4, 2411–2423.[CrossRef]
    [Google Scholar]
  47. Pattnaik, P., Babu, J. P., Verma, S. K., Tak, V. & Rao, P. V. ( 2007; ). Bacterially expressed and refolded envelope protein (domain III) of dengue virus type-4 binds heparan sulfate. J Chromatogr B Analyt Technol Biomed Life Sci 846, 184–194.[CrossRef]
    [Google Scholar]
  48. Pokidysheva, E., Zhang, Y., Battisti, A. J., Bator-Kelly, C. M., Chipman, P. R., Xiao, C., Gregorio, G. G., Hendrickson, W. A., Kuhn, R. J. & Rossmann, M. G. ( 2006; ). Cryo-EM reconstruction of dengue virus in complex with the carbohydrate recognition domain of DC-SIGN. Cell 124, 485–493.[CrossRef]
    [Google Scholar]
  49. Pryor, M. J., Carr, J. M., Hocking, H., Davidson, A. D., Li, P. & Wright, P. J. ( 2001; ). Replication of dengue virus type 2 in human monocyte-derived macrophages: comparisons of isolates and recombinant viruses with substitutions at amino acid 390 in the envelope glycoprotein. Am J Trop Med Hyg 65, 427–434.
    [Google Scholar]
  50. Renard, M., Belkadi, L., Hugo, N., England, P., Altschuh, D. & Bedouelle, H. ( 2002; ). Knowledge-based design of reagentless fluorescent biosensors from recombinant antibodies. J Mol Biol 318, 429–442.[CrossRef]
    [Google Scholar]
  51. Renard, M., Belkadi, L. & Bedouelle, H. ( 2003; ). Deriving topological constraints from functional data for the design of reagentless fluorescent immunosensors. J Mol Biol 326, 167–175.[CrossRef]
    [Google Scholar]
  52. Roehrig, J. T. ( 2003; ). Antigenic structure of flavivirus proteins. Adv Virus Res 59, 141–175.
    [Google Scholar]
  53. Roehrig, J. T., Bolin, R. A. & Kelly, R. G. ( 1998; ). Monoclonal antibody mapping of the envelope glycoprotein of the dengue 2 virus, Jamaica. Virology 246, 317–328.[CrossRef]
    [Google Scholar]
  54. Roehrig, J. T., Volpe, K. E., Squires, J., Hunt, A. R., Davis, B. S. & Chang, G. J. ( 2004; ). Contribution of disulfide bridging to epitope expression of the dengue type 2 virus envelope glycoprotein. J Virol 78, 2648–2652.[CrossRef]
    [Google Scholar]
  55. Rondard, P. & Bedouelle, H. ( 1998; ). A mutational approach shows similar mechanisms of recognition for the isolated and integrated versions of a protein epitope. J Biol Chem 273, 34753–34759.[CrossRef]
    [Google Scholar]
  56. Rondard, P., Goldberg, M. E. & Bedouelle, H. ( 1997; ). Mutational analysis of an antigenic peptide shows recognition in a loop conformation. Biochemistry 36, 8962–8968.[CrossRef]
    [Google Scholar]
  57. Ryman, K. D., Ledger, T. N., Campbell, G. A., Watowich, S. J. & Barrett, A. D. ( 1998; ). Mutation in a 17D–204 vaccine substrain-specific envelope protein epitope alters the pathogenesis of yellow fever virus in mice. Virology 244, 59–65.[CrossRef]
    [Google Scholar]
  58. Sambrook, J. & Russell, D. W. ( 2001; ). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Press.
  59. Sanchez, I. J. & Ruiz, B. H. ( 1996; ). A single nucleotide change in the E protein gene of dengue virus 2 Mexican strain affects neurovirulence in mice. J Gen Virol 77, 2541–2545.[CrossRef]
    [Google Scholar]
  60. Schlesinger, J. J., Chapman, S., Nestorowicz, A., Rice, C. M., Ginocchio, T. E. & Chambers, T. J. ( 1996; ). Replication of yellow fever virus in the mouse central nervous system: comparison of neuroadapted and non-neuroadapted virus and partial sequence analysis of the neuroadapted strain. J Gen Virol 77, 1277–1285.[CrossRef]
    [Google Scholar]
  61. Se-Thoe, S. Y., Ling, A. E. & Ng, M. M. ( 2000; ). Alteration of virus entry mode: a neutralisation mechanism for dengue-2 virus. J Med Virol 62, 364–376.[CrossRef]
    [Google Scholar]
  62. Seif, S. A., Morita, K. & Igarashi, A. ( 1996; ). A 27 amino acid coding region of JE virus E protein expressed in E. coli as fusion protein with glutathione-S-transferase elicit neutralizing antibody in mice. Virus Res 43, 91–96.[CrossRef]
    [Google Scholar]
  63. Serafin, I. L. & Aaskov, J. G. ( 2001; ). Identification of epitopes on the envelope (E) protein of dengue 2 and dengue 3 viruses using monoclonal antibodies. Arch Virol 146, 2469–2479.[CrossRef]
    [Google Scholar]
  64. Tassaneetrithep, B., Burgess, T. H., Granelli-Piperno, A., Trumpfherer, C., Finke, J., Sun, W., Eller, M. A., Pattanapanyasat, K., Sarasombath, S. & other authors ( 2003; ). DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. J Exp Med 197, 823–829.[CrossRef]
    [Google Scholar]
  65. Thepparit, C. & Smith, D. R. ( 2004; ). Serotype-specific entry of dengue virus into liver cells: identification of the 37-kilodalton/67-kilodalton high-affinity laminin receptor as a dengue virus serotype 1 receptor. J Virol 78, 12647–12656.[CrossRef]
    [Google Scholar]
  66. Thullier, P., Lafaye, P., Megret, F., Deubel, V., Jouan, A. & Mazie, J. C. ( 1999; ). A recombinant Fab neutralizes dengue virus in vitro. J Biotechnol 69, 183–190.[CrossRef]
    [Google Scholar]
  67. Thullier, P., Demangel, C., Bedouelle, H., Megret, F., Jouan, A., Deubel, V., Mazie, J. C. & Lafaye, P. ( 2001; ). Mapping of a dengue virus neutralizing epitope critical for the infectivity of all serotypes: insight into the neutralization mechanism. J Gen Virol 82, 1885–1892.
    [Google Scholar]
  68. Tio, P. H., Jong, W. W. & Cardosa, M. J. ( 2005; ). Two dimensional VOPBA reveals laminin receptor (LAMR1) interaction with dengue virus serotypes 1, 2 and 3. Virol J 2, 25 [CrossRef]
    [Google Scholar]
  69. Urban, A., Neukirchen, S. & Jaeger, K. E. ( 1997; ). A rapid and efficient method for site-directed mutagenesis using one-step overlap extension PCR. Nucleic Acids Res 25, 2227–2228.[CrossRef]
    [Google Scholar]
  70. Volk, D. E., Beasley, D. W., Kallick, D. A., Holbrook, M. R., Barrett, A. D. & Gorenstein, D. G. ( 2004; ). Solution structure and antibody binding studies of the envelope protein domain III from the New York strain of West Nile virus. J Biol Chem 279, 38755–38761.[CrossRef]
    [Google Scholar]
  71. Volk, D. E., Lee, Y. C., Li, X., Thiviyanathan, V., Gromowski, G. D., Li, L., Lamb, A. R., Beasley, D. W., Barrett, A. D. & Gorenstein, D. G. ( 2007; ). Solution structure of the envelope protein domain III of dengue-4 virus. Virology 364, 147–154.[CrossRef]
    [Google Scholar]
  72. Vriend, G. ( 1990; ). what if: a molecular modeling and drug design program. J Mol Graph 8, 52–56.[CrossRef]
    [Google Scholar]
  73. Wu, S. C. & Lin, C. W. ( 2001; ). Neutralizing peptide ligands selected from phage-displayed libraries mimic the conformational epitope on domain III of the Japanese encephalitis virus envelope protein. Virus Res 76, 59–69.[CrossRef]
    [Google Scholar]
  74. Wu, S. C., Lian, W. C., Hsu, L. C. & Liau, M. Y. ( 1997; ). Japanese encephalitis virus antigenic variants with characteristic differences in neutralization resistance and mouse virulence. Virus Res 51, 173–181.[CrossRef]
    [Google Scholar]
  75. Wu, K. P., Wu, C. W., Tsao, Y. P., Kuo, T. W., Lou, Y. C., Lin, C. W., Wu, S. C. & Cheng, J. W. ( 2003; ). Structural basis of a flavivirus recognized by its neutralizing antibody: solution structure of the domain III of the Japanese encephalitis virus envelope protein. J Biol Chem 278, 46007–46013.[CrossRef]
    [Google Scholar]
  76. Zhang, W., Chipman, P. R., Corver, J., Johnson, P. R., Zhang, Y., Mukhopadhyay, S., Baker, T. S., Strauss, J. H., Rossmann, M. G. & Kuhn, R. J. ( 2003; ). Visualization of membrane protein domains by cryo-electron microscopy of dengue virus. Nat Struct Biol 10, 907–912.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83028-0
Loading
/content/journal/jgv/10.1099/vir.0.83028-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error