1887

Abstract

The cellular protein human Daxx (hDaxx), a component of nuclear domain 10 structures, is known to mediate transcriptional repression of human cytomegalovirus immediate-early (IE) gene expression upon infection of permissive cell types, at least in part, by regulation of chromatin structure around the major IE promoter (MIEP). As it is now clear that differentiation-dependent regulation of the MIEP also plays a pivotal role in the control of latency and reactivation, we asked whether hDaxx-mediated repression is involved in differentiation-dependent MIEP regulation. We show that downregulation of hDaxx by using small interfering RNA technology in undifferentiated NT2D1 cells does not permit expression of viral IE genes, nor does it result in changes in chromatin structure around the MIEP. Viral IE gene expression is only observed upon cellular differentiation, suggesting little involvement of hDaxx in the regulation of the viral MIEP in undifferentiated cells.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83019-0
2007-11-01
2019-11-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/11/2935.html?itemId=/content/journal/jgv/10.1099/vir.0.83019-0&mimeType=html&fmt=ahah

References

  1. Ahn, J. H. & Hayward, G. S. ( 1997; ). The major immediate-early proteins IE1 and IE2 of human cytomegalovirus colocalize with and disrupt PML-associated nuclear bodies at very early times in infected permissive cells. J Virol 71, 4599–4613.
    [Google Scholar]
  2. Ahn, J. H. & Hayward, G. S. ( 2000; ). Disruption of PML-associated nuclear bodies by IE1 correlates with efficient early stages of viral gene expression and DNA replication in human cytomegalovirus infection. Virology 274, 39–55.[CrossRef]
    [Google Scholar]
  3. Andrews, P. W., Damjanov, I., Simon, D., Banting, G. S., Carlin, C., Dracopoli, N. C. & Fogh, J. ( 1984; ). Pluripotent embryonal carcinoma clones derived from the human teratocarcinoma cell line Tera-2. Differentiation in vivo and in vitro. Lab Invest 50, 147–162.
    [Google Scholar]
  4. Bain, M., Mendelson, M. & Sinclair, J. ( 2003; ). Ets-2 Repressor Factor (ERF) mediates repression of the human cytomegalovirus major immediate-early promoter in undifferentiated non-permissive cells. J Gen Virol 84, 41–49.[CrossRef]
    [Google Scholar]
  5. Bannister, A. J., Zegerman, P., Partridge, J. F., Miska, E. A., Thomas, J. O., Allshire, R. C. & Kouzarides, T. ( 2001; ). Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410, 120–124.[CrossRef]
    [Google Scholar]
  6. Cantrell, S. R. & Bresnahan, W. A. ( 2005; ). Interaction between the human cytomegalovirus UL82 gene product (pp71) and hDaxx regulates immediate-early gene expression and viral replication. J Virol 79, 7792–7802.[CrossRef]
    [Google Scholar]
  7. Cantrell, S. R. & Bresnahan, W. A. ( 2006; ). Human cytomegalovirus (HCMV) UL82 gene product (pp71) relieves hDaxx-mediated repression of HCMV replication. J Virol 80, 6188–6191.[CrossRef]
    [Google Scholar]
  8. Drew, W. L. ( 1988; ). Diagnosis of cytomegalovirus infection. Rev Infect Dis 10 (Suppl. 3), S468–S476.[CrossRef]
    [Google Scholar]
  9. Everett, R. D. ( 2001; ). DNA viruses and viral proteins that interact with PML nuclear bodies. Oncogene 20, 7266–7273.[CrossRef]
    [Google Scholar]
  10. Gonczol, E., Andrews, P. W. & Plotkin, S. A. ( 1984; ). Cytomegalovirus replicates in differentiated but not in undifferentiated human embryonal carcinoma cells. Science 224, 159–161.[CrossRef]
    [Google Scholar]
  11. Hay, D. C., Sutherland, L., Clark, J. & Burdon, T. ( 2004; ). Oct-4 knockdown induces similar patterns of endoderm and trophoblast differentiation markers in human and mouse embryonic stem cells. Stem Cells 22, 225–235.[CrossRef]
    [Google Scholar]
  12. Ho, M. ( 1990; ). Epidemiology of cytomegalovirus infections. Rev Infect Dis 12 (Suppl. 7), S701–S710.[CrossRef]
    [Google Scholar]
  13. Hofmann, H., Sindre, H. & Stamminger, T. ( 2002; ). Functional interaction between the pp71 protein of human cytomegalovirus and the PML-interacting protein human Daxx. J Virol 76, 5769–5783.[CrossRef]
    [Google Scholar]
  14. Hollenbach, A. D., McPherson, C. J., Mientjes, E. J., Iyengar, R. & Grosveld, G. ( 2002; ). Daxx and histone deacetylase II associate with chromatin through an interaction with core histones and the chromatin-associated protein Dek. J Cell Sci 115, 3319–3330.
    [Google Scholar]
  15. Hsu, W. L. & Everett, R. D. ( 2001; ). Human neuron-committed teratocarcinoma NT2 cell line has abnormal ND10 structures and is poorly infected by herpes simplex virus type 1. J Virol 75, 3819–3831.[CrossRef]
    [Google Scholar]
  16. Hunninghake, G. W., Monick, M. M., Liu, B. & Stinski, M. F. ( 1989; ). The promoter-regulatory region of the major immediate-early gene of human cytomegalovirus responds to T-lymphocyte stimulation and contains functional cyclic AMP-response elements. J Virol 63, 3026–3033.
    [Google Scholar]
  17. Ishov, A. M. & Maul, G. G. ( 1996; ). The periphery of nuclear domain 10 (ND10) as site of DNA virus deposition. J Cell Biol 134, 815–826.[CrossRef]
    [Google Scholar]
  18. Ishov, A. M., Vladimirova, O. V. & Maul, G. G. ( 2002; ). Daxx-mediated accumulation of human cytomegalovirus tegument protein pp71 at ND10 facilitates initiation of viral infection at these nuclear domains. J Virol 76, 7705–7712.[CrossRef]
    [Google Scholar]
  19. Kelly, C., Van Driel, R. & Wilkinson, G. W. ( 1995; ). Disruption of PML-associated nuclear bodies during human cytomegalovirus infection. J Gen Virol 76, 2887–2893.[CrossRef]
    [Google Scholar]
  20. Korioth, F., Maul, G. G., Plachter, B., Stamminger, T. & Frey, J. ( 1996; ). The nuclear domain 10 (ND10) is disrupted by the human cytomegalovirus gene product IE1. Exp Cell Res 229, 155–158.[CrossRef]
    [Google Scholar]
  21. Lang, D., Fickenscher, H. & Stamminger, T. ( 1992; ). Analysis of proteins binding to the proximal promoter region of the human cytomegalovirus IE-1/2 enhancer/promoter reveals both consensus and aberrant recognition sequences for transcription factors Sp1 and CREB. Nucleic Acids Res 20, 3287–3295.[CrossRef]
    [Google Scholar]
  22. Liu, R., Baillie, J., Sissons, J. G. & Sinclair, J. H. ( 1994; ). The transcription factor YY1 binds to negative regulatory elements in the human cytomegalovirus major immediate early enhancer/promoter and mediates repression in non-permissive cells. Nucleic Acids Res 22, 2453–2459.[CrossRef]
    [Google Scholar]
  23. Lubon, H., Ghazal, P., Hennighausen, L., Reynolds-Kohler, C., Lockshin, C. & Nelson, J. ( 1989; ). Cell-specific activity of the modulator region in the human cytomegalovirus major immediate-early gene. Mol Cell Biol 9, 1342–1345.
    [Google Scholar]
  24. Matin, M. M., Walsh, J. R., Gokhale, P. J., Draper, J. S., Bahrami, A. R., Morton, I., Moore, H. D. & Andrews, P. W. ( 2004; ). Specific knockdown of Oct4 and beta2-microglobulin expression by RNA interference in human embryonic stem cells and embryonic carcinoma cells. Stem Cells 22, 659–668.[CrossRef]
    [Google Scholar]
  25. Maul, G. G. ( 1998; ). Nuclear domain 10, the site of DNA virus transcription and replication. Bioessays 20, 660–667.[CrossRef]
    [Google Scholar]
  26. Meier, J. L. ( 2001; ). Reactivation of the human cytomegalovirus major immediate-early regulatory region and viral replication in embryonal NTera2 cells: role of trichostatin A, retinoic acid, and deletion of the 21-base-pair repeats and modulator. J Virol 75, 1581–1593.[CrossRef]
    [Google Scholar]
  27. Michaelson, J. S. & Leder, P. ( 2003; ). RNAi reveals anti-apoptotic and transcriptionally repressive activities of DAXX. J Cell Sci 116, 345–352.[CrossRef]
    [Google Scholar]
  28. Murphy, J. C., Fischle, W., Verdin, E. & Sinclair, J. H. ( 2002; ). Control of cytomegalovirus lytic gene expression by histone acetylation. EMBO J 21, 1112–1120.[CrossRef]
    [Google Scholar]
  29. Negorev, D. & Maul, G. G. ( 2001; ). Cellular proteins localized at and interacting within ND10/PML nuclear bodies/PODs suggest functions of a nuclear depot. Oncogene 20, 7234–7242.[CrossRef]
    [Google Scholar]
  30. Poole, E., King, C. A., Sinclair, J. H. & Alcami, A. ( 2006; ). The UL144 gene product of human cytomegalovirus activates NFκB via a TRAF6-dependent mechanism. EMBO J 25, 4390–4399.[CrossRef]
    [Google Scholar]
  31. Preston, C. M. & Nicholl, M. J. ( 2006; ). Role of the cellular protein hDaxx in human cytomegalovirus immediate-early gene expression. J Gen Virol 87, 1113–1121.[CrossRef]
    [Google Scholar]
  32. Reeves, M. B., Lehner, P. J., Sissons, J. G. & Sinclair, J. H. ( 2005a; ). An in vitro model for the regulation of human cytomegalovirus latency and reactivation in dendritic cells by chromatin remodelling. J Gen Virol 86, 2949–2954.[CrossRef]
    [Google Scholar]
  33. Reeves, M. B., MacAry, P. A., Lehner, P. J., Sissons, J. G. & Sinclair, J. H. ( 2005b; ). Latency, chromatin remodeling, and reactivation of human cytomegalovirus in the dendritic cells of healthy carriers. Proc Natl Acad Sci U S A 102, 4140–4145.[CrossRef]
    [Google Scholar]
  34. Rosner, M. H., Vigano, M. A., Ozato, K., Timmons, P. M., Poirier, F., Rigby, P. W. & Staudt, L. M. ( 1990; ). A POU-domain transcription factor in early stem cells and germ cells of the mammalian embryo. Nature 345, 686–692.[CrossRef]
    [Google Scholar]
  35. Rubin, R. H. ( 1990; ). Impact of cytomegalovirus infection on organ transplant recipients. Rev Infect Dis 12 (Suppl. 7), S754–S766.[CrossRef]
    [Google Scholar]
  36. Saffert, R. T. & Kalejta, R. F. ( 2006a; ). Inactivating a cellular intrinsic immune defense mediated by Daxx is the mechanism through which the human cytomegalovirus pp71 protein stimulates viral immediate-early gene expression. J Virol 80, 3863–3871.[CrossRef]
    [Google Scholar]
  37. Saffert, R. T. & Kalejta, R. F. ( 2006b; ).. Differentiation-dependent pp71-mediated Daxx degradation correlates with HCMV IE1 gene expression in NT2 and THP-1 cells. In Abstracts of the 31st International Herpesvirus Workshop, 22–28 July 2006, Seattle, WA, USA, abstract 8.31.
  38. Sambucetti, L. C., Cherrington, J. M., Wilkinson, G. W. & Mocarski, E. S. ( 1989; ). NF-κB activation of the cytomegalovirus enhancer is mediated by a viral transactivator and by T cell stimulation. EMBO J 8, 4251–4258.
    [Google Scholar]
  39. Sinclair, J. & Sissons, P. ( 2006; ). Latency and reactivation of human cytomegalovirus. J Gen Virol 87, 1763–1779.[CrossRef]
    [Google Scholar]
  40. Strahl, B. D. & Allis, C. D. ( 2000; ). The language of covalent histone modifications. Nature 403, 41–45.[CrossRef]
    [Google Scholar]
  41. Wilkinson, G. W., Kelly, C., Sinclair, J. H. & Rickards, C. ( 1998; ). Disruption of PML-associated nuclear bodies mediated by the human cytomegalovirus major immediate early gene product. J Gen Virol 79, 1233–1245.
    [Google Scholar]
  42. Woodhall, D. L., Groves, I. J., Reeves, M. B., Wilkinson, G. & Sinclair, J. H. ( 2006; ). Human Daxx-mediated repression of human cytomegalovirus gene expression correlates with a repressive chromatin structure around the major immediate early promoter. J Biol Chem 281, 37652–37660.[CrossRef]
    [Google Scholar]
  43. Wright, E., Bain, M., Teague, L., Murphy, J. & Sinclair, J. ( 2005; ). Ets-2 repressor factor recruits histone deacetylase to silence human cytomegalovirus immediate-early gene expression in non-permissive cells. J Gen Virol 86, 535–544.[CrossRef]
    [Google Scholar]
  44. Yang, W. M., Inouye, C., Zeng, Y., Bearss, D. & Seto, E. ( 1996; ). Transcriptional repression by YY1 is mediated by interaction with a mammalian homolog of the yeast global regulator RPD3. Proc Natl Acad Sci U S A 93, 12845–12850.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83019-0
Loading
/content/journal/jgv/10.1099/vir.0.83019-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error