1887

Abstract

Peste-des-petits-ruminants virus (PPRV) and rinderpest virus (RPV) are two morbilliviruses of economic relevance in African and Asian countries. Although efficient vaccines are available for both diseases, they cannot protect the animals before 14 days post-vaccination. In emergencies, it would be desirable to have efficient therapeutics for virus control. Here, two regions are described in the nucleocapsid genes of PPRV and RPV that can be targeted efficiently by synthetic short interfering RNAs (siRNAs), resulting in a >80 % reduction in virus replication. The effects of siRNAs on the production of viral RNA by real-time quantitative PCR, of viral proteins by flow cytometry and of virus particles by appreciation of the cytopathic effect and virus titration were monitored. The findings of this work highlight the potential for siRNA molecules to be developed as therapeutic agents for the treatment of PPRV and RPV infections.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82981-0
2007-08-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/8/2307.html?itemId=/content/journal/jgv/10.1099/vir.0.82981-0&mimeType=html&fmt=ahah

References

  1. Amarzguioui M., Prydz H. 2004; An algorithm for selection of functional siRNA sequences. Biochem Biophys Res Commun 316:1050–1058 [CrossRef]
    [Google Scholar]
  2. Barik S. 2004; Control of nonsegmented negative-strand RNA virus replication by siRNA. Virus Res 102:27–35 [CrossRef]
    [Google Scholar]
  3. Far R. K.-K., Sczakiel G. 2003; The activity of siRNA in mammalian cells is related to structural target accessibility: a comparison with antisense oligonucleotides. Nucleic Acids Res 31:4417–4424 [CrossRef]
    [Google Scholar]
  4. Fire A., Xu S., Montgomery M. K., Kostas S. A., Driver S. E., Mello C. C. 1998; Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans . Nature 391:806–811 [CrossRef]
    [Google Scholar]
  5. Gargadennec L., Lalanne A. 1942; La peste des petits ruminants. Bull Serv Zootechnol Epizoot Afr Occid 5:16–21 (in French
    [Google Scholar]
  6. Hammond S. M., Caudy A. A., Hannon G. J. 2001; Post-transcriptional gene silencing by double-stranded RNA. Nat Rev Genet 2:110–119 [CrossRef]
    [Google Scholar]
  7. Hannon G. J. 2002; RNA interference. Nature 418:244–251 [CrossRef]
    [Google Scholar]
  8. Heale B. S. E., Soifer H. S., Bowers C., Rossi J. J. 2005; siRNA target site secondary structure predictions using local stable substructures. Nucleic Acids Res 33:e30 [CrossRef]
    [Google Scholar]
  9. Huesken D., Lange J., Mickanin C., Weiler J., Asselbergs F., Warner J., Meloon B., Engel S., Rosenberg A. other authors 2005; Design of a genome-wide siRNA library using an artificial neural network. Nat Biotechnol 23:995–1001 [CrossRef]
    [Google Scholar]
  10. Hutvagner G. 2005; Small RNA asymmetry in RNAi: function in RISC assembly and gene regulation. FEBS Lett 579:5850–5857 [CrossRef]
    [Google Scholar]
  11. Jagla B., Aulner N., Kelly P. D., Song D., Volchuk A., Zatorski A., Shum D., Mayer T., Angelis D. other authors 2005; Sequence characteristics of functional siRNAs. RNA 11:864–872 [CrossRef]
    [Google Scholar]
  12. Khvorova A., Reynolds A., Jayasena S. D. 2003; Functional siRNAs and miRNAs exhibit strand bias. Cell 115:209–216 [CrossRef]
    [Google Scholar]
  13. Lamb R. A., Parks G. D. 2007; Paramyxoviridae : the viruses and their replication. In Fields Virology, 5th edn. vol 1 pp 1449–1496 Philadelphia, PA: Lippincott Williams & Wilkins;
    [Google Scholar]
  14. Lefèvre P. C., Diallo A. 1991; Peste des petits ruminants. Rev Sci Tech O I E (Off Int Epizoot) 9:951–965 (in French
    [Google Scholar]
  15. Pekarik V. 2005; Design of shRNA for RNAi – a lesson from pre-miRNA processing: possible clinical applications. Brain Res Bull 68:115–120 [CrossRef]
    [Google Scholar]
  16. Reed L. J., Muench H. A. A. 1938; A simple method of estimating fifty percent endpoints. Am J Trop Med Hyg 27:493–497
    [Google Scholar]
  17. Reynolds A., Leake D., Boese Q., Scaringe S., Marshall W. S., Khvorova A. 2004; Rational siRNA design for RNA interference. Nat Biotechnol 22:326–330 [CrossRef]
    [Google Scholar]
  18. Rweyemamu M. M., Cheneau Y. 1995; Strategy for the global rinderpest eradication programme. Vet Microbiol 44:369–376 [CrossRef]
    [Google Scholar]
  19. Schubert S., Grünweller A., Erdmann V. A., Kurreck J. 2005; Local RNA target structure influences siRNA efficacy: systematic analysis of intentionally designed binding regions. J Mol Biol 348:883–893 [CrossRef]
    [Google Scholar]
  20. Schwarz D. S., Hutvágner G., Du T., Xu Z., Aronin N., Zamore P. D. 2003; Asymmetry in the assembly of the RNAi enzyme complex. Cell 115:199–208 [CrossRef]
    [Google Scholar]
  21. Shabalina S., Spiridonov A. N., Ogurstov A. Y. 2006; Computational models with thermodynamic and composition features improve siRNA design. BMC Bioinformatics 7:65 [CrossRef]
    [Google Scholar]
  22. Shaila M. S., Shamaki D., Forsyth M. A., Diallo A., Goatley L., Kitching R. P., Barrett T. 1996; Geographic distribution and epidemiology of peste des petits ruminants viruses. Virus Res 43:149–153 [CrossRef]
    [Google Scholar]
  23. Ui-Tei K., Naito Y., Takahashi F., Haragushi T., Ohki-Hamazaki H., Juni A., Ueda R., Saigo K. 2004; Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res 32:936–948 [CrossRef]
    [Google Scholar]
  24. Yoshinari K., Miyagishi M., Taira K. 2004; Effects on RNAi of the tight structure, sequence and position of the targeted region. Nucleic Acids Res 32:691–699 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82981-0
Loading
/content/journal/jgv/10.1099/vir.0.82981-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error