Anti-IE1 CD4 T-cell clones kill peptide-pulsed, but not human cytomegalovirus-infected, target cells Free

Abstract

Cellular immunity plays a major role in the control of human cytomegalovirus (HCMV) infection. CD4 T lymphocytes have been shown to contribute to this function but their precise role is a matter of debate. Although CD4 T cells have been shown to kill target cells through the perforin/granzyme pathway, whether HCMV-specific CD4 T cells are capable of killing HCMV-infected targets has not yet been documented. In the present paper, we have taken advantage of well established cellular reagents to address this issue. Human CD4 T-cell clones specific for the major immediate-early protein IE1 were shown to perform perforin-based cytotoxicity against peptide-pulsed targets. However, when tested on infected anitgen presenting cell targets, cytotoxicity was not detectable, although gamma interferon (IFN-) production was significant. Furthermore, cytotoxicity against peptide-pulsed targets was inhibited by HCMV infection, whereas IFN- production was not modified, suggesting that antigen processing was not altered. Remarkably, degranulation of CD4 T cells in the presence of infected targets was significant. Together, our data suggest that impaired cytotoxicity is not due to failure to recognize infected targets but rather to a mechanism specifically related to cytotoxicity.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82958-0
2007-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/9/2441.html?itemId=/content/journal/jgv/10.1099/vir.0.82958-0&mimeType=html&fmt=ahah

References

  1. Adhikary D., Behrends U., Moosmann A., Witter K., Bornkamm G. W., Mautner J. 2006; Control of Epstein-Barr virus infection in vitro by T helper cells specific for virion glycoproteins. J Exp Med 203:995–1006 [CrossRef]
    [Google Scholar]
  2. Appay V. 2004; The physiological role of cytotoxic CD4+ T-cells: the holy grail?. Clin Exp Immunol 138:10–13 [CrossRef]
    [Google Scholar]
  3. Appay V., Zaunders J. J., Papagno L., Sutton J., Jaramillo A., Waters A., Easterbrook P., Grey P., Smith D. other authors 2002; Characterization of CD4+ CTLs ex vivo. J Immunol 168:5954–5958 [CrossRef]
    [Google Scholar]
  4. Betts M. R., Brenchley J. M., Price D. A., De Rosa S. C., Douek D. C., Roederer M., Koup R. A. 2003; Sensitive and viable identification of antigen-specific CD8+ T cells by a flow cytometric assay for degranulation. J Immunol Methods 281:65–78 [CrossRef]
    [Google Scholar]
  5. Betts M. R., Price D. A., Brenchley J. M., Lore K., Guenaga F. J., Smed-Sorensen A., Ambrozak D. R., Migueles S. A., Connors M. other authors 2004; The functional profile of primary human antiviral CD8+ T cell effector activity is dictated by cognate peptide concentration. J Immunol 172:6407–6417 [CrossRef]
    [Google Scholar]
  6. Bissinger A. L., Sinzger C., Kaiserling E., Jahn G. 2002; Human cytomegalovirus as a direct pathogen: correlation of multiorgan involvement and cell distribution with clinical and pathological findings in a case of congenital inclusion disease. J Med Virol 67:200–206 [CrossRef]
    [Google Scholar]
  7. Cebulla C. M., Miller D. M., Zhang Y., Rahill B. M., Zimmerman P., Robinson J. M., Sedmak D. D. 2002; Human cytomegalovirus disrupts constitutive MHC class II expression. J Immunol 169:167–176 [CrossRef]
    [Google Scholar]
  8. Davignon J. L., Castanie P., Yorke J. A., Gautier N., Clement D., Davrinche C. 1996; Anti-human cytomegalovirus activity of cytokines produced by CD4+ T-cell clones specifically activated by IE1 peptides in vitro. J Virol 70:2162–2169
    [Google Scholar]
  9. Einsele H., Roosnek E., Rufer N., Sinzger C., Riegler S., Loffler J., Grigoleit U., Moris A., Rammensee H. other authors 2002; Infusion of cytomegalovirus (CMV)-specific T cells for the treatment of CMV infection not responding to antiviral chemotherapy. Blood 99:3916–3922 [CrossRef]
    [Google Scholar]
  10. Elkington R., Khanna R. 2005; Cross-recognition of human alloantigen by cytomegalovirus glycoprotein-specific CD4+ cytotoxic T lymphocytes: implications for graft-versus-host disease. Blood 105:1362–1364
    [Google Scholar]
  11. Fierz W., Endler B., Reske K., Wekerle H., Fontana A. 1985; Astrocytes as antigen-presenting cells. I. Induction of Ia antigen expression on astrocytes by T cells via immune interferon and its effect on antigen presentation. J Immunol 134:3785–3793
    [Google Scholar]
  12. Gamadia L. E., Remmerswaal E. B., Weel J. F., Bemelman F., van Lier R. A., Ten Berge I. J. 2003; Primary immune responses to human CMV: a critical role for IFN-gamma-producing CD4+ T cells in protection against CMV disease. Blood 101:2686–2692 [CrossRef]
    [Google Scholar]
  13. Gautier N., Chavant E., Prieur E., Monsarrat B., Mazarguil H., Davrinche C., Gairin J. E., Davignon J. L. 1996; Characterization of an epitope of the human cytomegalovirus protein IE1 recognized by a CD4+ T cell clone. Eur J Immunol 26:1110–1117 [CrossRef]
    [Google Scholar]
  14. Gavin M. A., Gilbert M. J., Riddell S. R., Greenberg P. D., Bevan M. J. 1993; Alkali hydrolysis of recombinant proteins allows for the rapid identification of class I MHC-restricted CTL epitopes. J Immunol 151:3971–3980
    [Google Scholar]
  15. Gyulai Z., Endresz V., Burian K., Pincus S., Toldy J., Cox W. I., Meric C., Plotkin S., Gonczol E., Berencsi K. 2000; Cytotoxic T lymphocyte (CTL) responses to human cytomegalovirus pp65, IE1-Exon4, gB, pp150, and pp28 in healthy individuals: reevaluation of prevalence of IE1-specific CTLs. J Infect Dis 181:1537–1546 [CrossRef]
    [Google Scholar]
  16. Hegde N. R., Chevalier M. S., Johnson D. C. 2003; Viral inhibition of MHC class II antigen presentation. Trends Immunol 24:278–285 [CrossRef]
    [Google Scholar]
  17. Hegde N. R., Dunn C., Lewinsohn D. M., Jarvis M. A., Nelson J. A., Johnson D. C. 2005; Endogenous human cytomegalovirus gB is presented efficiently by MHC class II molecules to CD4+ CTL. J Exp Med 202:1109–1119 [CrossRef]
    [Google Scholar]
  18. Hemmer B., Stefanova I., Vergelli M., Germain R. N., Martin R. 1998; Relationships among TCR ligand potency, thresholds for effector function elicitation, and the quality of early signaling events in human T cells. J Immunol 160:5807–5814
    [Google Scholar]
  19. Hopkins J. I., Fiander A. N., Evans A. S., Delchambre M., Gheysen D., Borysiewicz L. K. 1996; Cytotoxic T cell immunity to human cytomegalovirus glycoprotein B. J Med Virol 49:124–131 [CrossRef]
    [Google Scholar]
  20. Horton H., Russell N., Moore E., Frank I., Baydo R., Havenar-Daughton C., Lee D., Deers M., Hudgens M. other authors 2004; Correlation between interferon-gamma secretion and cytotoxicity, in virus-specific memory T cells. J Infect Dis 190:1692–1696 [CrossRef]
    [Google Scholar]
  21. Johnson D. C., Hill A. B. 1998; Herpesvirus evasion of the immune system. Curr Top Microbiol Immunol 232:149–177
    [Google Scholar]
  22. Kagi D., Vignaux F., Ledermann B., Burki K., Depraetere V., Nagata S., Hengartner H., Golstein P. 1994; Fas and perforin pathways as major mechanisms of T cell-mediated cytotoxicity. Science 265:528–530 [CrossRef]
    [Google Scholar]
  23. Kataoka T., Shinohara N., Takayama H., Takaku K., Kondo S., Yonehara S., Nagai K. 1996; Concanamycin A, a powerful tool for characterization and estimation of contribution of perforin- and Fas-based lytic pathways in cell-mediated cytotoxicity. J Immunol 156:3678–3686
    [Google Scholar]
  24. Khanolkar A., Yagita H., Cannon M. J. 2001; Preferential utilization of the perforin/granzyme pathway for lysis of Epstein-Barr virus-transformed lymphoblastoid cells by virus-specific CD4+ T cells. Virology 287:79–88 [CrossRef]
    [Google Scholar]
  25. Komanduri K. V., Viswanathan M. N., Wieder E. D., Schmidt D. K., Bredt B. M., Jacobson M. A., McCune J. M. 1998; Restoration of cytomegalovirus-specific CD4+ T-lymphocyte responses after ganciclovir and highly active antiretroviral therapy in individuals infected with HIV-1. Nat Med 4:953–956 [CrossRef]
    [Google Scholar]
  26. Le Roy E., Muhlethaler-Mottet A., Davrinche C., Mach B., Davignon J. L. 1999; Escape of human cytomegalovirus from HLA-DR-restricted CD4+ T-cell response is mediated by repression of gamma interferon-induced class II transactivator expression. J Virol 73:6582–6589
    [Google Scholar]
  27. Le Roy E., Baron M., Faigle W., Clement D., Lewinsohn D. M., Streblow D. N., Nelson J. A., Amigorena S., Davignon J. L. 2002; Infection of APC by human cytomegalovirus controlled through recognition of endogenous nuclear immediate early protein 1 by specific CD4+ T lymphocytes. J Immunol 169:1293–1301 [CrossRef]
    [Google Scholar]
  28. Londei M., Lamb J. R., Bottazzo G. F., Feldmann M. 1984; Epithelial cells expressing aberrant MHC class II determinants can present antigen to cloned human T cells. Nature 312:639–641 [CrossRef]
    [Google Scholar]
  29. Medema J. P., de Jong J., Peltenburg L. T., Verdegaal E. M., Gorter A., Bres S. A., Franken K. L., Hahne M., Albar J. P. & other authors (2001a). Blockade of the granzyme B/perforin pathway through overexpression of the serine protease inhibitor PI-9/SPI-6 constitutes a mechanism for immune escape by tumors. Proc Natl Acad Sci U S A 98:11515–11520 [CrossRef]
    [Google Scholar]
  30. Medema J. P., Schuurhuis D. H., Rea D., van Tongeren J., de Jong J., Bres S. A., Laban S., Toes R. E., Toebes M. other authors 2001b; Expression of the serpin serine protease inhibitor 6 protects dendritic cells from cytotoxic T lymphocyte-induced apoptosis: differential modulation by T helper type 1 and type 2 cells. J Exp Med 194:657–667 [CrossRef]
    [Google Scholar]
  31. Miller D. M., Cebulla C. M., Sedmak D. D. 2002; Human cytomegalovirus inhibition of major histocompatibility complex transcription and interferon signal transduction. Curr Top Microbiol Immunol 269:153–170
    [Google Scholar]
  32. Mocarski E. S., Jr. 2004; Immune escape and exploitation strategies of cytomegaloviruses: impact on and imitation of the major histocompatibility system. Cell Microbiol 6:707–717 [CrossRef]
    [Google Scholar]
  33. Odeberg J., Browne H., Metkar S., Froelich C. J., Branden L., Cosman D., Soderberg-Naucler C. 2003; The human cytomegalovirus protein UL16 mediates increased resistance to natural killer cell cytotoxicity through resistance to cytolytic proteins. J Virol 77:4539–4545 [CrossRef]
    [Google Scholar]
  34. Pass R. F. 2001; Cytomegalovirus. In Fields Virology pp 2675–2706 Edited by Knipe D. M., Howley P. M. Philadelphia, PA: Lippincott Williams & Wilkins;
    [Google Scholar]
  35. Reddehase M. J. 2000; The immunogenicity of human and murine cytomegaloviruses. Curr Opin Immunol 12:738 [CrossRef]
    [Google Scholar]
  36. Sinzger C., Plachter B., Grefte A., The T. H., Jahn G. 1996; Tissue macrophages are infected by human cytomegalovirus in vivo. J Infect Dis 173:240–245 [CrossRef]
    [Google Scholar]
  37. Sinzger C., Kahl M., Laib K., Klingel K., Rieger P., Plachter B., Jahn G. 2000; Tropism of human cytomegalovirus for endothelial cells is determined by a post-entry step dependent on efficient translocation to the nucleus. J Gen Virol 81:3021–3035
    [Google Scholar]
  38. Sylwester A. W., Mitchell B. L., Edgar J. B., Taormina C., Pelte C., Ruchti F., Sleath P. R., Grabstein K. H., Hosken N. A. other authors 2005; Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of exposed subjects. J Exp Med 202:673–685 [CrossRef]
    [Google Scholar]
  39. Tazume K., Hagihara M., Gansuvd B., Higuchi A., Ueda Y., Hirabayashi K., Hojo M., Tanabe A., Okamoto A. other authors 2004; Induction of cytomegalovirus-specific CD4+ cytotoxic T lymphocytes from seropositive or negative healthy subjects or stem cell transplant recipients. Exp Hematol 32:95–103 [CrossRef]
    [Google Scholar]
  40. Tomazin R., Boname J., Hegde N. R., Lewinsohn D. M., Altschuler Y., Jones T. R., Cresswell P., Nelson J. A., Riddell S. R., Johnson D. C. 1999; Cytomegalovirus US2 destroys two components of the MHC class II pathway, preventing recognition by CD4+ T cells. Nat Med 5:1039–1043 [CrossRef]
    [Google Scholar]
  41. Vales-Gomez M., Browne H., Reyburn H. T. 2003; Expression of the UL16 glycoprotein of human cytomegalovirus protects the virus-infected cell from attack by natural killer cells. BMC Immunol 4:4 [CrossRef]
    [Google Scholar]
  42. Valitutti S., Muller S., Dessing M., Lanzavecchia A. 1996; Different responses are elicited in cytotoxic T lymphocytes by different levels of T cell receptor occupancy. J Exp Med 183:1917–1921 [CrossRef]
    [Google Scholar]
  43. van Leeuwen E. M., Remmerswaal E. B., Vossen M. T., Rowshani A. T., Wertheim-van Dillen P. M., van Lier R. A., ten Berge I. J. 2004; Emergence of a CD4+CD28 granzyme B+, cytomegalovirus-specific T cell subset after recovery of primary cytomegalovirus infection. J Immunol 173:1834–1841 [CrossRef]
    [Google Scholar]
  44. Wahid R., Cannon M. J., Chow M. 2005; Virus-specific CD4+ and CD8+ cytotoxic T-cell responses and long-term T-cell memory in individuals vaccinated against polio. J Virol 79:5988–5995 [CrossRef]
    [Google Scholar]
  45. Walter E. A., Greenberg P. D., Gilbert M. J., Finch R. J., Watanabe K. S., Thomas E. D., Riddell S. R. 1995; Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N Engl J Med 333:1038–1044 [CrossRef]
    [Google Scholar]
  46. Warren A. P., Ducroq D. H., Lehner P. J., Borysiewicz L. K. 1994; Human cytomegalovirus-infected cells have unstable assembly of major histocompatibility complex class I complexes and are resistant to lysis by cytotoxic T lymphocytes. J Virol 68:2822–2829
    [Google Scholar]
  47. Weekes M. P., Wills M. R., Sissons J. G., Carmichael A. J. 2004; Long-term stable expanded human CD4+ T cell clones specific for human cytomegalovirus are distributed in both CD45RAhigh and CD45ROhigh populations. J Immunol 173:5843–5851 [CrossRef]
    [Google Scholar]
  48. Xu X. N., Screaton G. R., McMichael A. J. 2001; Virus infections: escape, resistance, and counterattack. Immunity 15:867–870 [CrossRef]
    [Google Scholar]
  49. Yasukawa M., Yakushijin Y., Fujita S. 1996; Two distinct mechanisms of cytotoxicity mediated by herpes simplex virus-specific CD4+ human cytotoxic T cell clones. Clin Immunol Immunopathol 78:70–76 [CrossRef]
    [Google Scholar]
  50. Zaunders J. J., Dyer W. B., Wang B., Munier M. L., Miranda-Saksena M., Newton R., Moore J., Mackay C. R., Cooper D. A. other authors 2004; Identification of circulating antigen-specific CD4+ T lymphocytes with a CCR5+, cytotoxic phenotype in an HIV-1 long-term nonprogressor and in CMV infection. Blood 103:2238–2247 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82958-0
Loading
/content/journal/jgv/10.1099/vir.0.82958-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed