1887

Abstract

Cellular immunity plays a major role in the control of human cytomegalovirus (HCMV) infection. CD4 T lymphocytes have been shown to contribute to this function but their precise role is a matter of debate. Although CD4 T cells have been shown to kill target cells through the perforin/granzyme pathway, whether HCMV-specific CD4 T cells are capable of killing HCMV-infected targets has not yet been documented. In the present paper, we have taken advantage of well established cellular reagents to address this issue. Human CD4 T-cell clones specific for the major immediate-early protein IE1 were shown to perform perforin-based cytotoxicity against peptide-pulsed targets. However, when tested on infected anitgen presenting cell targets, cytotoxicity was not detectable, although gamma interferon (IFN-) production was significant. Furthermore, cytotoxicity against peptide-pulsed targets was inhibited by HCMV infection, whereas IFN- production was not modified, suggesting that antigen processing was not altered. Remarkably, degranulation of CD4 T cells in the presence of infected targets was significant. Together, our data suggest that impaired cytotoxicity is not due to failure to recognize infected targets but rather to a mechanism specifically related to cytotoxicity.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82958-0
2007-09-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/9/2441.html?itemId=/content/journal/jgv/10.1099/vir.0.82958-0&mimeType=html&fmt=ahah

References

  1. Adhikary, D., Behrends, U., Moosmann, A., Witter, K., Bornkamm, G. W. & Mautner, J. ( 2006; ). Control of Epstein-Barr virus infection in vitro by T helper cells specific for virion glycoproteins. J Exp Med 203, 995–1006.[CrossRef]
    [Google Scholar]
  2. Appay, V. ( 2004; ). The physiological role of cytotoxic CD4+ T-cells: the holy grail? Clin Exp Immunol 138, 10–13.[CrossRef]
    [Google Scholar]
  3. Appay, V., Zaunders, J. J., Papagno, L., Sutton, J., Jaramillo, A., Waters, A., Easterbrook, P., Grey, P., Smith, D. & other authors ( 2002; ). Characterization of CD4+ CTLs ex vivo. J Immunol 168, 5954–5958.[CrossRef]
    [Google Scholar]
  4. Betts, M. R., Brenchley, J. M., Price, D. A., De Rosa, S. C., Douek, D. C., Roederer, M. & Koup, R. A. ( 2003; ). Sensitive and viable identification of antigen-specific CD8+ T cells by a flow cytometric assay for degranulation. J Immunol Methods 281, 65–78.[CrossRef]
    [Google Scholar]
  5. Betts, M. R., Price, D. A., Brenchley, J. M., Lore, K., Guenaga, F. J., Smed-Sorensen, A., Ambrozak, D. R., Migueles, S. A., Connors, M. & other authors ( 2004; ). The functional profile of primary human antiviral CD8+ T cell effector activity is dictated by cognate peptide concentration. J Immunol 172, 6407–6417.[CrossRef]
    [Google Scholar]
  6. Bissinger, A. L., Sinzger, C., Kaiserling, E. & Jahn, G. ( 2002; ). Human cytomegalovirus as a direct pathogen: correlation of multiorgan involvement and cell distribution with clinical and pathological findings in a case of congenital inclusion disease. J Med Virol 67, 200–206.[CrossRef]
    [Google Scholar]
  7. Cebulla, C. M., Miller, D. M., Zhang, Y., Rahill, B. M., Zimmerman, P., Robinson, J. M. & Sedmak, D. D. ( 2002; ). Human cytomegalovirus disrupts constitutive MHC class II expression. J Immunol 169, 167–176.[CrossRef]
    [Google Scholar]
  8. Davignon, J. L., Castanie, P., Yorke, J. A., Gautier, N., Clement, D. & Davrinche, C. ( 1996; ). Anti-human cytomegalovirus activity of cytokines produced by CD4+ T-cell clones specifically activated by IE1 peptides in vitro. J Virol 70, 2162–2169.
    [Google Scholar]
  9. Einsele, H., Roosnek, E., Rufer, N., Sinzger, C., Riegler, S., Loffler, J., Grigoleit, U., Moris, A., Rammensee, H. & other authors ( 2002; ). Infusion of cytomegalovirus (CMV)-specific T cells for the treatment of CMV infection not responding to antiviral chemotherapy. Blood 99, 3916–3922.[CrossRef]
    [Google Scholar]
  10. Elkington, R. & Khanna, R. ( 2005; ). Cross-recognition of human alloantigen by cytomegalovirus glycoprotein-specific CD4+ cytotoxic T lymphocytes: implications for graft-versus-host disease. Blood 105, 1362–1364.
    [Google Scholar]
  11. Fierz, W., Endler, B., Reske, K., Wekerle, H. & Fontana, A. ( 1985; ). Astrocytes as antigen-presenting cells. I. Induction of Ia antigen expression on astrocytes by T cells via immune interferon and its effect on antigen presentation. J Immunol 134, 3785–3793.
    [Google Scholar]
  12. Gamadia, L. E., Remmerswaal, E. B., Weel, J. F., Bemelman, F., van Lier, R. A. & Ten Berge, I. J. ( 2003; ). Primary immune responses to human CMV: a critical role for IFN-gamma-producing CD4+ T cells in protection against CMV disease. Blood 101, 2686–2692.[CrossRef]
    [Google Scholar]
  13. Gautier, N., Chavant, E., Prieur, E., Monsarrat, B., Mazarguil, H., Davrinche, C., Gairin, J. E. & Davignon, J. L. ( 1996; ). Characterization of an epitope of the human cytomegalovirus protein IE1 recognized by a CD4+ T cell clone. Eur J Immunol 26, 1110–1117.[CrossRef]
    [Google Scholar]
  14. Gavin, M. A., Gilbert, M. J., Riddell, S. R., Greenberg, P. D. & Bevan, M. J. ( 1993; ). Alkali hydrolysis of recombinant proteins allows for the rapid identification of class I MHC-restricted CTL epitopes. J Immunol 151, 3971–3980.
    [Google Scholar]
  15. Gyulai, Z., Endresz, V., Burian, K., Pincus, S., Toldy, J., Cox, W. I., Meric, C., Plotkin, S., Gonczol, E. & Berencsi, K. ( 2000; ). Cytotoxic T lymphocyte (CTL) responses to human cytomegalovirus pp65, IE1-Exon4, gB, pp150, and pp28 in healthy individuals: reevaluation of prevalence of IE1-specific CTLs. J Infect Dis 181, 1537–1546.[CrossRef]
    [Google Scholar]
  16. Hegde, N. R., Chevalier, M. S. & Johnson, D. C. ( 2003; ). Viral inhibition of MHC class II antigen presentation. Trends Immunol 24, 278–285.[CrossRef]
    [Google Scholar]
  17. Hegde, N. R., Dunn, C., Lewinsohn, D. M., Jarvis, M. A., Nelson, J. A. & Johnson, D. C. ( 2005; ). Endogenous human cytomegalovirus gB is presented efficiently by MHC class II molecules to CD4+ CTL. J Exp Med 202, 1109–1119.[CrossRef]
    [Google Scholar]
  18. Hemmer, B., Stefanova, I., Vergelli, M., Germain, R. N. & Martin, R. ( 1998; ). Relationships among TCR ligand potency, thresholds for effector function elicitation, and the quality of early signaling events in human T cells. J Immunol 160, 5807–5814.
    [Google Scholar]
  19. Hopkins, J. I., Fiander, A. N., Evans, A. S., Delchambre, M., Gheysen, D. & Borysiewicz, L. K. ( 1996; ). Cytotoxic T cell immunity to human cytomegalovirus glycoprotein B. J Med Virol 49, 124–131.[CrossRef]
    [Google Scholar]
  20. Horton, H., Russell, N., Moore, E., Frank, I., Baydo, R., Havenar-Daughton, C., Lee, D., Deers, M., Hudgens, M. & other authors ( 2004; ). Correlation between interferon-gamma secretion and cytotoxicity, in virus-specific memory T cells. J Infect Dis 190, 1692–1696.[CrossRef]
    [Google Scholar]
  21. Johnson, D. C. & Hill, A. B. ( 1998; ). Herpesvirus evasion of the immune system. Curr Top Microbiol Immunol 232, 149–177.
    [Google Scholar]
  22. Kagi, D., Vignaux, F., Ledermann, B., Burki, K., Depraetere, V., Nagata, S., Hengartner, H. & Golstein, P. ( 1994; ). Fas and perforin pathways as major mechanisms of T cell-mediated cytotoxicity. Science 265, 528–530.[CrossRef]
    [Google Scholar]
  23. Kataoka, T., Shinohara, N., Takayama, H., Takaku, K., Kondo, S., Yonehara, S. & Nagai, K. ( 1996; ). Concanamycin A, a powerful tool for characterization and estimation of contribution of perforin- and Fas-based lytic pathways in cell-mediated cytotoxicity. J Immunol 156, 3678–3686.
    [Google Scholar]
  24. Khanolkar, A., Yagita, H. & Cannon, M. J. ( 2001; ). Preferential utilization of the perforin/granzyme pathway for lysis of Epstein-Barr virus-transformed lymphoblastoid cells by virus-specific CD4+ T cells. Virology 287, 79–88.[CrossRef]
    [Google Scholar]
  25. Komanduri, K. V., Viswanathan, M. N., Wieder, E. D., Schmidt, D. K., Bredt, B. M., Jacobson, M. A. & McCune, J. M. ( 1998; ). Restoration of cytomegalovirus-specific CD4+ T-lymphocyte responses after ganciclovir and highly active antiretroviral therapy in individuals infected with HIV-1. Nat Med 4, 953–956.[CrossRef]
    [Google Scholar]
  26. Le Roy, E., Muhlethaler-Mottet, A., Davrinche, C., Mach, B. & Davignon, J. L. ( 1999; ). Escape of human cytomegalovirus from HLA-DR-restricted CD4+ T-cell response is mediated by repression of gamma interferon-induced class II transactivator expression. J Virol 73, 6582–6589.
    [Google Scholar]
  27. Le Roy, E., Baron, M., Faigle, W., Clement, D., Lewinsohn, D. M., Streblow, D. N., Nelson, J. A., Amigorena, S. & Davignon, J. L. ( 2002; ). Infection of APC by human cytomegalovirus controlled through recognition of endogenous nuclear immediate early protein 1 by specific CD4+ T lymphocytes. J Immunol 169, 1293–1301.[CrossRef]
    [Google Scholar]
  28. Londei, M., Lamb, J. R., Bottazzo, G. F. & Feldmann, M. ( 1984; ). Epithelial cells expressing aberrant MHC class II determinants can present antigen to cloned human T cells. Nature 312, 639–641.[CrossRef]
    [Google Scholar]
  29. Medema, J. P., de Jong, J., Peltenburg, L. T., Verdegaal, E. M., Gorter, A., Bres, S. A., Franken, K. L., Hahne, M., Albar, J. P. & other authors ( 2001a; ). Blockade of the granzyme B/perforin pathway through overexpression of the serine protease inhibitor PI-9/SPI-6 constitutes a mechanism for immune escape by tumors. Proc Natl Acad Sci U S A 98, 11515–11520.[CrossRef]
    [Google Scholar]
  30. Medema, J. P., Schuurhuis, D. H., Rea, D., van Tongeren, J., de Jong, J., Bres, S. A., Laban, S., Toes, R. E., Toebes, M. & other authors ( 2001b; ). Expression of the serpin serine protease inhibitor 6 protects dendritic cells from cytotoxic T lymphocyte-induced apoptosis: differential modulation by T helper type 1 and type 2 cells. J Exp Med 194, 657–667.[CrossRef]
    [Google Scholar]
  31. Miller, D. M., Cebulla, C. M. & Sedmak, D. D. ( 2002; ). Human cytomegalovirus inhibition of major histocompatibility complex transcription and interferon signal transduction. Curr Top Microbiol Immunol 269, 153–170.
    [Google Scholar]
  32. Mocarski, E. S., Jr ( 2004; ). Immune escape and exploitation strategies of cytomegaloviruses: impact on and imitation of the major histocompatibility system. Cell Microbiol 6, 707–717.[CrossRef]
    [Google Scholar]
  33. Odeberg, J., Browne, H., Metkar, S., Froelich, C. J., Branden, L., Cosman, D. & Soderberg-Naucler, C. ( 2003; ). The human cytomegalovirus protein UL16 mediates increased resistance to natural killer cell cytotoxicity through resistance to cytolytic proteins. J Virol 77, 4539–4545.[CrossRef]
    [Google Scholar]
  34. Pass, R. F. ( 2001; ). Cytomegalovirus. In Fields Virology, pp. 2675–2706. Edited by D. M. Knipe & P. M. Howley. Philadelphia, PA: Lippincott Williams & Wilkins.
  35. Reddehase, M. J. ( 2000; ). The immunogenicity of human and murine cytomegaloviruses. Curr Opin Immunol 12, 738 [CrossRef]
    [Google Scholar]
  36. Sinzger, C., Plachter, B., Grefte, A., The, T. H. & Jahn, G. ( 1996; ). Tissue macrophages are infected by human cytomegalovirus in vivo. J Infect Dis 173, 240–245.[CrossRef]
    [Google Scholar]
  37. Sinzger, C., Kahl, M., Laib, K., Klingel, K., Rieger, P., Plachter, B. & Jahn, G. ( 2000; ). Tropism of human cytomegalovirus for endothelial cells is determined by a post-entry step dependent on efficient translocation to the nucleus. J Gen Virol 81, 3021–3035.
    [Google Scholar]
  38. Sylwester, A. W., Mitchell, B. L., Edgar, J. B., Taormina, C., Pelte, C., Ruchti, F., Sleath, P. R., Grabstein, K. H., Hosken, N. A. & other authors ( 2005; ). Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of exposed subjects. J Exp Med 202, 673–685.[CrossRef]
    [Google Scholar]
  39. Tazume, K., Hagihara, M., Gansuvd, B., Higuchi, A., Ueda, Y., Hirabayashi, K., Hojo, M., Tanabe, A., Okamoto, A. & other authors ( 2004; ). Induction of cytomegalovirus-specific CD4+ cytotoxic T lymphocytes from seropositive or negative healthy subjects or stem cell transplant recipients. Exp Hematol 32, 95–103.[CrossRef]
    [Google Scholar]
  40. Tomazin, R., Boname, J., Hegde, N. R., Lewinsohn, D. M., Altschuler, Y., Jones, T. R., Cresswell, P., Nelson, J. A., Riddell, S. R. & Johnson, D. C. ( 1999; ). Cytomegalovirus US2 destroys two components of the MHC class II pathway, preventing recognition by CD4+ T cells. Nat Med 5, 1039–1043.[CrossRef]
    [Google Scholar]
  41. Vales-Gomez, M., Browne, H. & Reyburn, H. T. ( 2003; ). Expression of the UL16 glycoprotein of human cytomegalovirus protects the virus-infected cell from attack by natural killer cells. BMC Immunol 4, 4 [CrossRef]
    [Google Scholar]
  42. Valitutti, S., Muller, S., Dessing, M. & Lanzavecchia, A. ( 1996; ). Different responses are elicited in cytotoxic T lymphocytes by different levels of T cell receptor occupancy. J Exp Med 183, 1917–1921.[CrossRef]
    [Google Scholar]
  43. van Leeuwen, E. M., Remmerswaal, E. B., Vossen, M. T., Rowshani, A. T., Wertheim-van Dillen, P. M., van Lier, R. A. & ten Berge, I. J. ( 2004; ). Emergence of a CD4+CD28 granzyme B+, cytomegalovirus-specific T cell subset after recovery of primary cytomegalovirus infection. J Immunol 173, 1834–1841.[CrossRef]
    [Google Scholar]
  44. Wahid, R., Cannon, M. J. & Chow, M. ( 2005; ). Virus-specific CD4+ and CD8+ cytotoxic T-cell responses and long-term T-cell memory in individuals vaccinated against polio. J Virol 79, 5988–5995.[CrossRef]
    [Google Scholar]
  45. Walter, E. A., Greenberg, P. D., Gilbert, M. J., Finch, R. J., Watanabe, K. S., Thomas, E. D. & Riddell, S. R. ( 1995; ). Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N Engl J Med 333, 1038–1044.[CrossRef]
    [Google Scholar]
  46. Warren, A. P., Ducroq, D. H., Lehner, P. J. & Borysiewicz, L. K. ( 1994; ). Human cytomegalovirus-infected cells have unstable assembly of major histocompatibility complex class I complexes and are resistant to lysis by cytotoxic T lymphocytes. J Virol 68, 2822–2829.
    [Google Scholar]
  47. Weekes, M. P., Wills, M. R., Sissons, J. G. & Carmichael, A. J. ( 2004; ). Long-term stable expanded human CD4+ T cell clones specific for human cytomegalovirus are distributed in both CD45RAhigh and CD45ROhigh populations. J Immunol 173, 5843–5851.[CrossRef]
    [Google Scholar]
  48. Xu, X. N., Screaton, G. R. & McMichael, A. J. ( 2001; ). Virus infections: escape, resistance, and counterattack. Immunity 15, 867–870.[CrossRef]
    [Google Scholar]
  49. Yasukawa, M., Yakushijin, Y. & Fujita, S. ( 1996; ). Two distinct mechanisms of cytotoxicity mediated by herpes simplex virus-specific CD4+ human cytotoxic T cell clones. Clin Immunol Immunopathol 78, 70–76.[CrossRef]
    [Google Scholar]
  50. Zaunders, J. J., Dyer, W. B., Wang, B., Munier, M. L., Miranda-Saksena, M., Newton, R., Moore, J., Mackay, C. R., Cooper, D. A. & other authors ( 2004; ). Identification of circulating antigen-specific CD4+ T lymphocytes with a CCR5+, cytotoxic phenotype in an HIV-1 long-term nonprogressor and in CMV infection. Blood 103, 2238–2247.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82958-0
Loading
/content/journal/jgv/10.1099/vir.0.82958-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error