1887

Abstract

Inhibitors of viral disassembly or RNA and protein synthesis, viral disassembly intermediates (infectious subviral particles, ISVP), binary ethylenimine-inactivated virions, and viral particles lacking genomic double-stranded (ds) RNA (empty particles) were used to assess the expression of interleukin-1 (IL-1) mRNA in chicken (chIL-1) macrophages in response to avian reovirus. The results demonstrate that two distinct expression patterns of chIL-1 mRNA mediated by different steps in viral replication were found. Viral disassembly was required for the induction of a rapid, transient expression pattern of chIL-1 mRNA that was rapidly induced at 30 min, with maximal levels reached by 2 h, and fell to a low level within 6 h post-inoculation, while viral RNA synthesis rather than protein translation, which was subsequent to membrane penetration, was required to induce a stable, sustained expression pattern of chIL-1 mRNA that occurred at and after 6 h post-inoculation. In addition, the induction of chIL-1 mRNA expression by the empty particles and ISVP was extremely weak, compared with the active dsRNA virions or binary ethylenimine-inactivated virions, suggesting that the presence of dsRNA, even if transcriptionally inactive, may be an important factor in this response.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82957-0
2008-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/4/1059.html?itemId=/content/journal/jgv/10.1099/vir.0.82957-0&mimeType=html&fmt=ahah

References

  1. Akira S., Takeda K. 2004; Toll-like receptor signalling. Nat Rev Immunol 4:499–511 [CrossRef]
    [Google Scholar]
  2. Alexopoulou L., Holt A. C., Medzhitov R., Flavell R. A. 2001; Recognition of double-stranded RNA and activation of NF- κ B by Toll-like receptor 3. Nature 413:732–738 [CrossRef]
    [Google Scholar]
  3. Andrejeva J., Childs K. S., Young D. F., Carlos T. S., Stock N., Goodbourn S., Randall R. E. 2004; The V proteins of paramyxoviruses bind the IFN-inducible RNA helicase, mda-5, and inhibit its activation of the IFN - β promoter. Proc Natl Acad Sci U S A 101:17264–17269 [CrossRef]
    [Google Scholar]
  4. Barrett A. J., Kambhavi A. A., Brown M. A., Kirschke H., Knight C. G., Tamai M., Hanada K. 1982; L-trans-epoxysuccinyl-leucylamido (4-guanidino) butan (E64) and its analogues as inhibitors of cysteine proteinases including cathepsin B, H and L. Biochem J 201:189–198
    [Google Scholar]
  5. Basak S., Turner H. 1992; Infectious entry pathway for canine parvovirus. Virology 186:368–376 [CrossRef]
    [Google Scholar]
  6. Bodelon G., Labrada L., Martinez-Costas J., Benavente J. 2001; The avian reovirus genome segment S1 is a functionally tricistronic gene that expresses one structural and two nonstructural proteins in infected cells. Virology 290:181–191 [CrossRef]
    [Google Scholar]
  7. Burger D., Dayer J.-M., Palmer G., Gabay C. 2006; Is IL-1 a good therapeutic target in the treatment of arthritis?. Best Pract Res Clin Rheumatol 20:879–896 [CrossRef]
    [Google Scholar]
  8. Connolly J. L., Dermody T. S. 2002; Virion disassembly is required for apoptosis induced by reovirus. J Virol 76:1632–1641 [CrossRef]
    [Google Scholar]
  9. Dinarello C. A. 2000; Interleukin-1 Family (IL-1 F1, F2). In The Cytokine Handbook . , 4th edn. pp 643–668Edited by Thomson A. W., Lotze M. T. and London: Academic Press;
  10. Donelli G., Superti F., Tinari A., Marziano M. L. 1992; Mechanism of astrovirus entry into Graham 293 cells. J Med Virol 38:271–277 [CrossRef]
    [Google Scholar]
  11. Dryden K. A., Wang G., Yeager M., Nibert M. L., Coombs K. M., Furlong D. B., Field B. N., Baker T. S. 1993; Early steps in reovirus infection are associated with dramatic changes in supramolecular structure and protein conformation: analysis of virions and subviral particles by cryoelectron microscopy and image reconstruction. J Cell Biol 122:1023–1041 [CrossRef]
    [Google Scholar]
  12. Duncan R. 1996; The low pH-dependent entry of avian reovirus is accompanied by two specific cleavages of the major outer capsid protein μ2C. Virology 219:179–189 [CrossRef]
    [Google Scholar]
  13. Greber U. F., Willets M., Webster P., Helenius A. 1993; Stepwise dismantling of adenovirus 2 during entry into cells. Cell 75:477–486 [CrossRef]
    [Google Scholar]
  14. Heggen C. L., Qureshi M. A., Edens F. W., Barnes H. J. 2000; Alternations in macrophage-produced cytokines and nitrite associated with poult enteritis and mortality syndrome. Avian Dis 44:59–65 [CrossRef]
    [Google Scholar]
  15. Heggen-Peay C. L., Cheema M. A., Ali R. A., Shat K. A., Qureshi M. A. 2002; Interactions of poult enteritis and mortality syndrome-associated reovirus with various cell types in vitro. Poultry Sci 81:1661–1667 [CrossRef]
    [Google Scholar]
  16. Hong Y. H., Lillehoj H. S., Lillehoj E. P., Lee S. H. 2006; Changes in immune-related gene expression and intestinal lymphocyte subpopulations following Eimeria maxima infection of chicken. Vet Immunol Immunopathol 114:259–272 [CrossRef]
    [Google Scholar]
  17. Iordanov M. S., Wong J., Bell J. C., Magun B. E. 2001; Activation of NF- κ B by double-stranded RNA (dsRNA) in the absence of protein kinase and RNase L demonstrates the existence of two separate dsRNA-triggered antiviral programs. Mol Cell Biol 21:61–72 [CrossRef]
    [Google Scholar]
  18. Jacobs B. L., Langland J. O. 1996; When two strands are better than one: the mediators and modulators of the cellular responses to double-stranded RNA. Virology 219:339–349 [CrossRef]
    [Google Scholar]
  19. Jarosinski K. W., Njaa B. L., O'Connell P. H., Schat K. A. 2005; Pro-inflammatory responses in chicken spleen and brain tissues after infection with very virulent plus Marek's disease virus. Viral Immunol 18:148–161 [CrossRef]
    [Google Scholar]
  20. Kariko K., Ni H., Capodici J., Lamphier M., Weissmem D. 2004; mRNA is an endogenous ligand for Toll-like receptor 3. J Biol Chem 279:12542–12550 [CrossRef]
    [Google Scholar]
  21. Khatri M., Palmquist J. M., Cha R. M., Sharma J. M. 2005; Infection and activation of bursal macrophages by virulent infectious bursal disease virus. Virus Res 113:44–50 [CrossRef]
    [Google Scholar]
  22. Klasing K. C., Peng R. K. 1987; Influence of cell sources, stimulating agents, and incubation conditions on release of interleukin 1 from chicken macrophages. Dev Comp Immunol 11:385–394 [CrossRef]
    [Google Scholar]
  23. Labrada L., Bodelon G., Vinuela J., Benavente J. 2002; Avian reoviruses cause apoptosis in cultured cells: viral uncoating, but not viral gene expression, is required for apoptosis induction. J Virol 76:7932–7941 [CrossRef]
    [Google Scholar]
  24. Larghi O. P., Nebel A. E. 1980; Rabies virus inactivation by binary ethylenimine: new method for inactivated vaccine production. J Clin Microbiol 11:120–122
    [Google Scholar]
  25. Lau R. Y., Van Alstyne D., Berckmans R., Graham A. F. 1975; Synthesis of reovirus-specific polypeptides in cells pretreated with cycloheximide. J Virol 16:470–478
    [Google Scholar]
  26. Laurent F., Mancassola R., Lacroix S., Menezes R., Naciri M. 2001; Analysis of chicken mucosal immune response to Eimeria tenella and Eimeria maxima infection by quantitative reverse transcription-PCR. Infect Immun 69:2527–2534 [CrossRef]
    [Google Scholar]
  27. Lee L. H., Wang Y. H., Shien J. H. 1992; Serological characterization of avian reoviruses isolated from avian species in Taiwan. J Chin Soc Vet Sci 18:69–77
    [Google Scholar]
  28. Lee L. H., Ting L. J., Shien J. H., Shieh H. K. 1994; Single-tube, noninterrupted reverse transcription-PCR for detection of infectious bursal disease virus. J Clin Microbiol 32:1268–1273
    [Google Scholar]
  29. Maggi L. B. Jr, Moran J. M., Buller R. M. L., Corbett J. A. 2003; ERK activation is required for double-stranded RNA and virus-induced interleukin-1 expression by macrophages. J Biol Chem 278:16683–16689 [CrossRef]
    [Google Scholar]
  30. Nibert M. L., Schiff L. A., Fields B. N. 1990; Reoviruses and their replication. In Fields Virology , 3rd edn. pp 691–730Edited by Fields B. N., Knipe D. M., Howley P. M. Philadelphia, PA: Lippincott–Raven Publishers;
    [Google Scholar]
  31. Nicholson D. W., Thomberry N. A. 1997; Caspases: killer proteases. Trends Biochem Sci 22:299–306 [CrossRef]
    [Google Scholar]
  32. Nonoyama M., Millward S., Graham A. F. 1974; Control of transcription of the reovirus genome. Nucleic Acids Res 1:373–385 [CrossRef]
    [Google Scholar]
  33. Panabieres F., Piechaczyk M., Rainer B., Dani C., Fort P., Riaad S., Marty L., Imbach J. L., Jeanteur P., Blanchard J. M. 1984; Complete nucleotide sequence of the messenger RNA coding for chicken muscle glyceraldehyde-3-phosphate dehydrogenase. Biochem Biophys Res Commun 118:767–773 [CrossRef]
    [Google Scholar]
  34. Rankin J. T. Jr, Eppes S. B., Antzak J. B., Joklik W. K. 1989; Studies on the mechanism of the antiviral activity of ribavirin against reovirus. Virology 168:147–158 [CrossRef]
    [Google Scholar]
  35. Reed L. J., Munch H. 1938; A simple method of estimating fifty percent endpoints. Am J Hyg 27:493–497
    [Google Scholar]
  36. Rosenberger J. K. 2003; Reovirus infections. In Diseases of Poultry , 11th edn. pp 283–293Edited by Saif Y. M., Barnes H. J., Glison J. R., Fadly A. M., McDoagald L. R., Swayne. Iowa: Iowa State University Press;
    [Google Scholar]
  37. Schnitzer T. J., Ramos T., Gouvea V. 1982; Avian reovirus polypeptides: analysis of intracellular virus-specific products, virions, top component, and cores. J Virol 43:1006–1014
    [Google Scholar]
  38. Seglen P. O. 1983; Inhibitors of lysosomal function. Methods Enzymol 96:737–764
    [Google Scholar]
  39. Shmulevitz M., Yameen E., Dawe S., Shou J., O'Hava D., Holmes I., Duncan R. 2002; Sequential partially overlapping gene arrangement in the tricistronic S1 genome segments of avian reovirus and Nelson Bay reovirus: implications for translation initiation. J Virol 76:609–618 [CrossRef]
    [Google Scholar]
  40. Smith R. E., Eweerink H. J., Joklik W. K. 1969; Polypeptide components of virions, top component and cores of reovirus type 3. Virology 39:791–810 [CrossRef]
    [Google Scholar]
  41. Spandidos D. A., Graham A. F. 1976; Physical and chemical characterization of an avian reovirus. J Virol 19:968–976
    [Google Scholar]
  42. Su Y. P., Su B. S., Shien J. H., Liu H. J., Lee L. H. 2006; The sequence and phylogenetic analysis of avian reovirus genome segments M1, M2, and M3 encoding the minor core protein μA, the major outer capsid protein μB, and the nonstructural protein μNS. J Virol Methods 133:146–157 [CrossRef]
    [Google Scholar]
  43. Tabeta K., Georgel P., Janssen E., Du X., Hoebe K., Crozat K., Mudd S., Shamel L., Sovath S. other authors 2004; Toll-like receptor 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus infection. Proc Natl Acad Sci U S A 101:3516–3521 [CrossRef]
    [Google Scholar]
  44. Touris-Otero F., Martinez-Costas J., Vakharia V. N., Benavente J. 2004; Avian reovirus nonstructural protein μNS forms viroplasm-like inclusions and recruits protein σ NS to these structures. Virology 319:94–106 [CrossRef]
    [Google Scholar]
  45. Varela R., Benavente J. 1994; Protein coding assignment of avian reovirus strain S1133. J Virol 68:6775–6777
    [Google Scholar]
  46. Watanabe Y., Kudo H., Graham A. F. 1967; Selective inhibition of reovirus ribonucleic acid synthesis by cycloheximide. J Virol 1:36–44
    [Google Scholar]
  47. Weining K. C., Sick C., Kaspers B., Staeheli P. 1998; A chicken homolog of mammalian interleukin-1 β : cDNA cloning and purification of active recombinant protein. Eur J Biochem 258:994–1000 [CrossRef]
    [Google Scholar]
  48. Withanage G. S., Kaiser P., Wigley P., Powers C., Mastroeni P., Brooks H., Barrow P., Smith A., Maskell D., McConnell I. 2004; Rapid expression of chemokines and proinflammatory cytokines in newly hatched chickens infected with Salmonella enterica serovar typhimurium. Infect Immun 72:2152–2159 [CrossRef]
    [Google Scholar]
  49. Wu Y. F., Liu H. J., Chiou S. H., Lee L. H. 2007; Sequence and phylogenetic analysis of interleukin (IL)-1 β -encoding genes of five avian species and structural and functional homology among these IL-1 β proteins. Vet Immunol Immunopathol 116:37–46 [CrossRef]
    [Google Scholar]
  50. Yin H. S., Shien J. H., Lee L. H. 2000; Synthesis in Escherichia coli of avian reovirus core protein σ A and its dsRNA-binding activity. Virology 266:33–41 [CrossRef]
    [Google Scholar]
  51. Yoneyama M., Kikuchi M., Natsukawa T., Shinobu N., Imaizumi T., Mijagishi M., Taira K., Akira S., Fujita T. 2004; The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 5:730–737 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82957-0
Loading
/content/journal/jgv/10.1099/vir.0.82957-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error