1887

Abstract

Lassa virus glycoprotein 2 (LASV GP-2) belongs to the class I fusion protein family. Its N terminus contains two stretches of highly conserved hydrophobic amino acids (residues 260–266 and 276–298) that have been proposed as N-terminal or internal fusion peptide segments (N-FPS, I-FPS) by analogy with similar sequences of other viral glycoproteins or based on experimental data obtained with synthetic peptides, respectively. By using a pH-dependent, recombinant LASV glycoprotein mediated cell–cell fusion assay and a retroviral pseudotype infectivity assay, an alanine scan of all hydrophobic amino acids within both proposed FPSs was performed. Fusogenicity and infectivity were correlated, both requiring correct processing of the glycoprotein precursor. Most point mutations in either FPS accounted for reduced or abolished fusion or infection, respectively. Some mutations also had an effect on pre-fusion steps of virus entry, possibly by inducing structural changes in the glycoprotein. The data demonstrate that several amino acids from both hydrophobic regions of the N terminus, some of which (W264, G277, Y278 and L280) are 100 % conserved in all arenaviruses, are involved in fusogenicity and infectivity of LASV GP-2.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82950-0
2007-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/8/2320.html?itemId=/content/journal/jgv/10.1099/vir.0.82950-0&mimeType=html&fmt=ahah

References

  1. Beyer W. R., Popplau D., Garten W., von Laer D., Lenz O. 2003; Endoproteolytic processing of the lymphocytic choriomeningitis virus glycoprotein by the subtilase SKI-1/S1P. J Virol 77:2866–2872 [CrossRef]
    [Google Scholar]
  2. Bruett L., Clements J. E. 2001; Functional murine leukemia virus vectors pseudotyped with the visna virus envelope show expanded visna virus cell tropism. J Virol 75:11464–11473 [CrossRef]
    [Google Scholar]
  3. Buchmeier M. J. 2002; Arenaviruses: protein structure and function. Curr Top Microbiol Immunol 262:159–173
    [Google Scholar]
  4. Cao W., Henry M. D., Borrow P., Yamada H., Elder J. H., Ravkov E. V., Nichol S. T., Compans R. W., Campbell K. P., Oldstone M. B. 1998; Identification of alpha-dystroglycan as a receptor for lymphocytic choriomeningitis virus and Lassa fever virus. Science 282:2079–2081 [CrossRef]
    [Google Scholar]
  5. Davis H. E., Morgan J. R., Yarmush M. L. 2002; Polybrene increases retrovirus gene transfer efficiency by enhancing receptor-independent virus adsorption on target cell membranes. Biophys Chem 97:159–172 [CrossRef]
    [Google Scholar]
  6. Delos S. E., Gilbert J. M., White J. M. 2000; The central proline of an internal viral fusion peptide serves two important roles. J Virol 74:1686–1693 [CrossRef]
    [Google Scholar]
  7. Di Simone C., Buchmeier M. J. 1995; Kinetics and pH dependence of acid-induced structural changes in the lymphocytic choriomeningitis virus glycoprotein complex. Virology 209:3–9 [CrossRef]
    [Google Scholar]
  8. Di Simone C., Zandonatti M. A., Buchmeier M. J. 1994; Acidic pH triggers LCMV membrane fusion activity and conformational change in the glycoprotein spike. Virology 198:455–465 [CrossRef]
    [Google Scholar]
  9. Earp L. J., Delos S. E., Park H. E., White J. M. 2005; The many mechanisms of viral membrane fusion proteins. Curr Top Microbiol Immunol 285:25–66
    [Google Scholar]
  10. Eichler R., Lenz O., Strecker T., Eickmann M., Klenk H. D., Garten W. 2003; Identification of Lassa virus glycoprotein signal peptide as a trans -acting maturation factor. EMBO Rep 4:1084–1088 [CrossRef]
    [Google Scholar]
  11. Eschli B., Quirin K., Wepf A., Weber J., Zinkernagel R. M., Hengartner H. 2006; Identification of an N-terminal trimeric coiled-coil core within arenavirus glycoprotein 2 permits assignment to class I viral fusion proteins. J Virol 80:5897–5907 [CrossRef]
    [Google Scholar]
  12. Gallaher W. R., Di Simone C., Buchmeier M. J. 2001; The viral transmembrane superfamily: possible divergence of arenavirus and filovirus glycoproteins from a common RNA virus ancestor. BMC Microbiol 1:1 [CrossRef]
    [Google Scholar]
  13. Glushakova S. E., Omelyanenko V. G., Lukashevich I. S., Bogdanov A. A. Jr, Moshnikova A. B., Kozytch A. T., Torchilin V. P. 1992; The fusion of artificial lipid membranes induced by the synthetic arenavirus ‘fusion peptide’. Biochim Biophys Acta 1110202–208 [CrossRef]
    [Google Scholar]
  14. Gómara M. J., Mora P., Mingarro I., Nieva J. L. 2004; Roles of a conserved proline in the internal fusion peptide of Ebola glycoprotein. FEBS Lett 569:261–266 [CrossRef]
    [Google Scholar]
  15. Havenga M. J., Lemckert A. A., Grimbergen J. M., Vogels R., Huisman L. G., Valerio D., Bout A., Quax P. H. 2001; Improved adenovirus vectors for infection of cardiovascular tissues. J Virol 75:3335–3342 [CrossRef]
    [Google Scholar]
  16. Higuchi R., Krummel B., Saiki R. K. 1988; A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Res 16:7351–7367 [CrossRef]
    [Google Scholar]
  17. Huang R. T. C., Rott R., Klenk H. D. 1981; Influenza viruses cause hemolysis and fusion of cells. Virology 110:243–247 [CrossRef]
    [Google Scholar]
  18. Ito H., Watanabe S., Sanchez A., Whitt M. A., Kawaoka Y. 1999; Mutational analysis of the putative fusion domain of Ebola virus glycoprotein. J Virol 73:8907–8912
    [Google Scholar]
  19. Kimpton J., Emerman M. 1992; Detection of replication-competent and pseudotyped human immunodeficiency virus with a sensitive cell line on the basis of activation of an integrated beta-galactosidase gene. J Virol 66:2232–2239
    [Google Scholar]
  20. Kunz S., Borrow P., Oldstone M. B. 2002; Receptor structure, binding, and cell entry of arenaviruses. Curr Top Microbiol Immunol 262:111–137
    [Google Scholar]
  21. Lenz O., ter Meulen J., Klenk H. D., Seidah N. G., Garten W. 2001; The Lassa virus glycoprotein precursor GP-C is proteolytically processed by subtilase SKI-1/S1P. Proc Natl Acad Sci U S A 98:12701–12705 [CrossRef]
    [Google Scholar]
  22. Neuman B. W., Adair B. D., Burns J. W., Milligan R. A., Buchmeier M. J., Yeager M. 2005; Complementarity in the supramolecular design of arenaviruses and retroviruses revealed by electron cryomicroscopy and image analysis. J Virol 79:3822–3830 [CrossRef]
    [Google Scholar]
  23. Niwa H., Yamamura K., Miyazaki J. 1991; Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108:193–199 [CrossRef]
    [Google Scholar]
  24. Rawson R. B., DeBose-Boyd R., Goldstein J. L., Brown M. S. 1999; Failure to cleave sterol regulatory element-binding proteins (SREBPs) causes cholesterol auxotrophy in Chinese hamster ovary cells with genetic absence of SREBP cleavage-activating protein. J Biol Chem 274:28549–28556 [CrossRef]
    [Google Scholar]
  25. Saunders A. A., Ting J. P. C., Meisner J., Neuman B. W., Perez M., de la Torre J. C., Buchmeier M. J. 2007; Mapping the landscape of the LCMV stable signal peptide reveals novel functional domains. J Virol 81:5649–5657 [CrossRef]
    [Google Scholar]
  26. Schwartz S., Felber B. K., Benko D. M., Fenyo E. M., Pavlakis G. N. 1990; Cloning and functional analysis of multiply spliced mRNA species of human immunodeficiency virus type 1. J Virol 64:2519–2529
    [Google Scholar]
  27. Seidah N. G., Mowla S. J., Hamelin J., Mamarbachi A. M., Benjannet S., Toure B. B., Basak A., Munzer J. S., Marcinkiewicz J. other authors 1999; Mammalian subtilisin/kexin isozyme SKI-1: a widely expressed proprotein convertase with a unique cleavage specificity and cellular localization. Proc Natl Acad Sci U S A 96:1321–1326 [CrossRef]
    [Google Scholar]
  28. Sena-Esteves M., Tebbets J. C., Steffens S., Crombleholme T., Flake A. W. 2004; Optimized large-scale production of high titer lentivirus vector pseudotypes. J Virol Methods 122:131–139 [CrossRef]
    [Google Scholar]
  29. Soneoka Y., Cannon P. M., Ramsdale E. E., Griffiths J. C., Romano G., Kingsman S. M., Kingsman A. J. 1995; A transient three-plasmid expression system for the production of high titer retroviral vectors. Nucleic Acids Res 23:628–633 [CrossRef]
    [Google Scholar]
  30. Strecker T., Eichler R., ter Meulen J., Weissenhorn W., Klenk H. D., Garten W., Lenz O. 2003; Lassa virus Z protein is a matrix protein and sufficient for the release of virus-like particles. J Virol 77:10700–10705 [CrossRef]
    [Google Scholar]
  31. Wagner R., Herwig A., Azzouz N., Klenk H. D. 2005; Acylation-mediated membrane anchoring of avian influenza virus hemagglutinin is essential for fusion pore formation and virus infectivity. J Virol 79:6449–6458 [CrossRef]
    [Google Scholar]
  32. York J., Nunberg J. H. 2007; Distinct requirements for signal peptidase processing and function in the stable signal peptide subunit of the Junin virus envelope glycoprotein. Virology 359:72–81 [CrossRef]
    [Google Scholar]
  33. York J., Romanowski V., Lu M., Nunberg J. H. 2004; The signal peptide of the Junin arenavirus envelope glycoprotein is myristoylated and forms an essential subunit of the mature G1–G2 complex. J Virol 78:10783–10792 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82950-0
Loading
/content/journal/jgv/10.1099/vir.0.82950-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error