1887

Abstract

Glycoprotein gH, together with its chaperone gL and a third glycoprotein gB, is essential for cell–cell fusion and virus–cell fusion mediated by herpesviruses. Epstein–Barr virus (EBV), the prototype human lymphocryptovirus, requires a fourth glycoprotein gp42 to support fusion with B cells in addition to epithelial cells. Two other lymphocryptoviruses, the rhesus lymphocryptovirus (Rh-LCV) and the common marmoset lymphocryptovirus (CalHV3), have been sequenced in their entirety and each has a gp42 homologue. Combinations of proteins from EBV, Rh-LCV and CalHV3 were able to mediate fusion of epithelial cells, but, even when complexed with EBV gp42, only Rh-LCV and not CalHV3 proteins were able to mediate fusion with human B cells. CalHV3 gL was also unable to function effectively as a chaperone for EBV or Rh-LCV gH. The Rh-LCV gH homologue supported more fusion than EBV gH with an epithelial cell and supported the highest levels of fusion with a B cell. Chimeric constructs made from Rh-LCV gH and EBV gH that have 85.4 % sequence identity should prove useful for mapping the regions of gH that are of importance to fusion as a whole and to B-cell fusion in particular.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82949-0
2007-08-01
2021-10-17
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/8/2129.html?itemId=/content/journal/jgv/10.1099/vir.0.82949-0&mimeType=html&fmt=ahah

References

  1. Borza C. M., Hutt-Fletcher L. M. 2002; Alternate replication in B cells and epithelial cells switches tropism of Epstein-Barr virus. Nat Med 8:594–599 [CrossRef]
    [Google Scholar]
  2. Borza C. M., Morgan A. J., Turk S. M., Hutt-Fletcher L. M. 2004; Use of gHgL for attachment of Epstein-Barr virus to epithelial cells compromises infection. J Virol 78:5007–5014 [CrossRef]
    [Google Scholar]
  3. Cho Y.-G., Ramer J., Rivailler P., Quink C., Garber R. L., Beier D. R., Wang F. 2001; An Epstein-Barr virus related herpesvirus from marmoset lymphomas. Proc Natl Acad Sci U S A 98:1224–1229 [CrossRef]
    [Google Scholar]
  4. Ferrer M., Kapoor T. M., Strassmaier T., Weissenhorn W., Skehel J. J., Oprian D., Schreiber S. L., Wiley D. C., Harrison S. C. 1999; Selection of gp41 mediated HIV-1 cell entry inhibitors from biased combinatorial libraries of non-natural binding elements. Nat Struct Biol 6:953–960 [CrossRef]
    [Google Scholar]
  5. Jenson H. B., Ench Y., Zhang Y., Gao S. J., Arrand J. R., Mackett M. 2002; Characterization of an Epstein-Barr virus related gammaherpesvirus from common marmoset ( Callithrix jacchus ). J Gen Virol 83:1621–1633
    [Google Scholar]
  6. Jiang R., Scott R. S., Hutt-Fletcher L. M. 2006; Epstein-Barr virus shed in saliva is high in B cell tropic gp42. J Virol 80:7281–7283 [CrossRef]
    [Google Scholar]
  7. Li Q. X., Turk S. M., Hutt-Fletcher L. M. 1995; The Epstein-Barr virus (EBV) BZLF2 gene product associates with the gH and gL homologs of EBV and carries an epitope critical to infection of B cells but not of epithelial cells. J Virol 69:3987–3994
    [Google Scholar]
  8. Li Q. X., Buranathai C., Grose C., Hutt-Fletcher L. M. 1997a; Chaperone functions common to nonhomologous Epstein-Barr virus gL and Varicella-Zoster virus gL proteins. J Virol 71:1667–1670
    [Google Scholar]
  9. Li Q. X., Spriggs M. K., Kovats S., Turk S. M., Comeau M. R., Nepom B., Hutt-Fletcher L. M. 1997b; Epstein-Barr virus uses HLA class II as a cofactor for infection of B lymphocytes. J Virol 71:4657–4662
    [Google Scholar]
  10. Maruo S., Yang L., Takada K. 2001; Roles of Epstein-Barr virus glycoproteins gp350 and gp25 in the infection of human epithelial cells. J Gen Virol 82:2373–2383
    [Google Scholar]
  11. McShane M. P., Longnecker R. 2004; Cell-surface expression of a mutated Epstein-Barr virus glycoprotein B allows fusion independent of other viral proteins. Proc Natl Acad Sci U S A 101:17474–17479 [CrossRef]
    [Google Scholar]
  12. Molesworth S. J., Lake C. M., Borza C. M., Turk S. M., Hutt-Fletcher L. M. 2000; Epstein-Barr virus gH is essential for penetration of B cell but also plays a role in attachment of virus to epithelial cells. J Virol 74:6324–6332 [CrossRef]
    [Google Scholar]
  13. Moss B., Elroy-Stein O., Mizukami T., Alexander W. A., Fuerst T. R. 1990; New mammalian expression vectors. Nature 348:91–92 [CrossRef]
    [Google Scholar]
  14. Niwa H., Yamamura K., Miyazaki J. 1991; Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108:193–199 [CrossRef]
    [Google Scholar]
  15. Omerovic J., Lev L., Longnecker R. 2005; The amino terminus of Epstein-Barr virus glycoprotein gH is important for fusion with B cells and epithelial cells. J Virol 79:12408–12415 [CrossRef]
    [Google Scholar]
  16. Pegtel D. M., Middeldorp J., Thorley-Lawson D. A. 2004; Epstein-Barr virus infection in ex-vivo tonsil epithelial cell cultures of asymptomatic carriers. J Virol 78:12613–12624 [CrossRef]
    [Google Scholar]
  17. Rickinson A. B., Kieff E. 2001; Epstein-Barr Virus. In Fields Virology pp 2575–2627 Edited by Knipe D. M., Howley P. M. Philadelphia: Lippincott Williams and Wilkins;
    [Google Scholar]
  18. Rivailler P., Cho Y.-G., Wang F. 2002a; Complete genomic sequence of an Epstein-Barr virus related herpesvirus naturally infecting a new world primate: a defining point in the evolution of oncogenic lymphocryptoviruses. J Virol 76:12055–12068 [CrossRef]
    [Google Scholar]
  19. Rivailler P., Jiang H., Cho Y.-G., Quink C., Wang F. 2002b; Complete nucleotide sequence of the rhesus lymphocryptovirus: genetic validation for an Epstein-Barr virus animal model. J Virol 76:421–426 [CrossRef]
    [Google Scholar]
  20. Sitki-Green D., Covington M., Raab-Traub N. 2003; Compartmentalization and transmission of mutliple Epstein-Barr virus strains in asymptomatic carriers. J Virol 77:1840–1847 [CrossRef]
    [Google Scholar]
  21. Spear P. G., Longnecker R. 2003; Herpesvirus entry: an update. J Virol 77:10179–10185 [CrossRef]
    [Google Scholar]
  22. Wang X., Hutt-Fletcher L. M. 1998; Epstein-Barr virus lacking glycoprotein gp42 can bind to B cells but is not able to infect. J Virol 72:158–163
    [Google Scholar]
  23. Wang X., Kenyon W. J., Li Q. X., Mullberg J., Hutt-Fletcher L. M. 1998; Epstein-Barr virus uses different complexes of glycoproteins gH and gL to infect B lymphocytes and epithelial cells. J Virol 72:5552–5558
    [Google Scholar]
  24. Whetter L. E., Day S. P., Brown E. A., Elroy-Stein O., Lemon S. M. 1994; Analysis of hepatitis A virus translation in a T7 polymerase-expressing cell line. Arch Virol Suppl 9:291–298
    [Google Scholar]
  25. Wu L., Hutt-Fletcher L. M. 2007; Point mutations in EBV gH that abrogate or differentially affect B cell and epithelial cell fusion. Virology 363:148–155 [CrossRef]
    [Google Scholar]
  26. Wu L., Borza C. M., Hutt-Fletcher L. M. 2005; Mutations of Epstein-Barr virus gH that are differentially able to support fusion with B cells or epithelial cells. J Virol 79:10923–10930 [CrossRef]
    [Google Scholar]
  27. Yaswen L. R., Stephens E. B., Davenport L. C., Hutt-Fletcher L. M. 1993; Epstein-Barr virus glycoprotein gp85 associates with the BKRF2 gene product and is incompletely processed as a recombinant protein. Virology 195:387–396 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82949-0
Loading
/content/journal/jgv/10.1099/vir.0.82949-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error