1887

Abstract

Equid herpesvirus 2 (EHV-2), in common with other members of the subfamily , encodes homologues of cellular seven-transmembrane receptors (7TMR), namely open reading frames (ORFs) E1, 74 and E6, which each show some similarity to cellular chemokine receptors. Whereas ORF74 and E6 are members of gammaherpesvirus-conserved 7TMR gene families, E1 is currently unique to EHV-2. To investigate their genetic variability, EHV-2 7TMRs from a panel of equine gammaherpesvirus isolates were sequenced. A region of gB was sequenced to provide comparative sequence data. Phylogenetic analysis revealed six ‘genogroups’ for E1 and four for ORF74, which exhibited approximately 10–38 and 11–27 % amino acid difference between groups, respectively. In contrast, E6 was highly conserved, with two genogroups identified. The greatest variation was observed within the N-terminal domains and other extracellular regions. Nevertheless, analysis of the number of non-synonymous ( ) and synonymous ( ) substitutions per site generally supported the hypothesis that the 7TMRs are under negative selective pressure to retain functionally important residues, although some site-specific positive selection ( > ) was also observed. Collectively, these data are consistent with transmembrane and cytoplasmic domains being less tolerant of mutations with adverse effects upon function. Finally, there was no evidence for genetic linkage between the different gB, E1, ORF74 and E6 genotypes, suggesting frequent intergenic recombination between different EHV-2 strains.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82942-0
2007-09-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/9/2450.html?itemId=/content/journal/jgv/10.1099/vir.0.82942-0&mimeType=html&fmt=ahah

References

  1. Ahuja, S. K. & Murphy, P. M. ( 1993; ). Molecular piracy of mammalian interleukin-8 receptor type B by herpesvirus saimiri. J Biol Chem 268, 20691–20694.
    [Google Scholar]
  2. Ahuja, S. K., Gao, J. L. & Murphy, P. M. ( 1994; ). Chemokine receptors and molecular mimicry. Immunol Today 15, 281–287.[CrossRef]
    [Google Scholar]
  3. Arvanitakis, L., Geras-Raaka, E., Varma, A., Gershengorn, M. C. & Cesarman, E. ( 1997; ). Human herpesvirus KSHV encodes a constitutively active G-protein-coupled receptor linked to cell proliferation. Nature 385, 347–350.[CrossRef]
    [Google Scholar]
  4. Bais, C., Santomasso, B., Coso, O., Arvanitakis, L., Raaka, E. G., Gutkind, J. S., Asch, A. S., Cesarman, E., Gershengorn, M. C. & other authors ( 1998; ). G-protein-coupled receptor of Kaposi's sarcoma-associated herpesvirus is a viral oncogene and angiogenesis activator. Nature 391, 86–89.[CrossRef]
    [Google Scholar]
  5. Beisser, P. S., Vink, C., Van Dam, J. G., Grauls, G., Vanherle, S. J. & Bruggeman, C. A. ( 1998; ). The R33 G protein-coupled receptor gene of rat cytomegalovirus plays an essential role in the pathogenesis of viral infection. J Virol 72, 2352–2363.
    [Google Scholar]
  6. Beisser, P. S., Grauls, G., Bruggeman, C. A. & Vink, C. ( 1999; ). Deletion of the R78 G protein-coupled receptor gene from rat cytomegalovirus results in an attenuated, syncytium-inducing mutant strain. J Virol 73, 7218–7230.
    [Google Scholar]
  7. Beisser, P. S., Verzijl, D., Gruijthuijsen, Y. K., Beuken, E., Smit, M. J., Leurs, R., Bruggeman, C. A. & Vink, C. ( 2005; ). The Epstein–Barr virus BILF1 gene encodes a G protein-coupled receptor that inhibits phosphorylation of RNA-dependent protein kinase. J Virol 79, 441–449.[CrossRef]
    [Google Scholar]
  8. Bell, S. A., Balasuriya, U. B., Gardner, I. A., Barry, P. A., Wilson, W. D., Ferraro, G. L. & MacLachlan, N. J. ( 2006; ). Temporal detection of equine herpesvirus infections of a cohort of mares and their foals. Vet Microbiol 116, 249–257.[CrossRef]
    [Google Scholar]
  9. Borchers, K., Wolfinger, U., Goltz, M., Broll, H. & Ludwig, H. ( 1997; ). Distribution and relevance of equine herpesvirus type 2 (EHV-2) infections. Arch Virol 142, 917–928.[CrossRef]
    [Google Scholar]
  10. Browning, G. F. & Studdert, M. J. ( 1987; ). Genomic heterogeneity of equine betaherpesviruses. J Gen Virol 68, 1441–1447.[CrossRef]
    [Google Scholar]
  11. Browning, G. F. & Studdert, M. J. ( 1989; ). Physical mapping of the genomic heterogeneity of isolates of equine herpesvirus 2 (equine cytomegalovirus). Arch Virol 104, 87–94.[CrossRef]
    [Google Scholar]
  12. Camarda, G., Spinetti, G., Bernardini, G., Mair, C., Davis-Poynter, N., Capogrossi, M. C. & Napolitano, M. ( 1999; ). The equine herpesvirus 2 E1 open reading frame encodes a functional chemokine receptor. J Virol 73, 9843–9848.
    [Google Scholar]
  13. Chen, L., Pei, G. & Zhang, W. ( 2004; ). An overall picture of chemokine receptors: basic research and drug development. Curr Pharm Des 10, 1045–1055.[CrossRef]
    [Google Scholar]
  14. Collinson, P. N., O'Rielly, J. L., Ficorilli, N. & Studdert, M. J. ( 1994; ). Isolation of equine herpesvirus type 2 (equine gammaherpesvirus 2) from foals with keratoconjunctivitis. J Am Vet Med Assoc 205, 329–331.
    [Google Scholar]
  15. Couty, J. P., Geras-Raaka, E., Weksler, B. B. & Gershengorn, M. C. ( 2001; ). Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor signals through multiple pathways in endothelial cells. J Biol Chem 276, 33805–33811.[CrossRef]
    [Google Scholar]
  16. Davis-Poynter, N. J. & Farrell, H. E. ( 1996; ). Masters of deception: a review of herpesvirus immune evasion strategies. Immunol Cell Biol 74, 513–522.[CrossRef]
    [Google Scholar]
  17. Davis-Poynter, N. J., Lynch, D. M., Vally, H., Shellam, G. R., Rawlinson, W. D., Barrell, B. G. & Farrell, H. E. ( 1997; ). Identification and characterization of a G protein-coupled receptor homolog encoded by murine cytomegalovirus. J Virol 71, 1521–1529.
    [Google Scholar]
  18. Drummer, H. E., Reubel, G. H. & Studdert, M. J. ( 1996; ). Equine gammaherpesvirus 2 (EHV2) is latent in B lymphocytes. Arch Virol 141, 495–504.[CrossRef]
    [Google Scholar]
  19. Estep, R. D., Axthelm, M. K. & Wong, S. W. ( 2003; ). A G protein-coupled receptor encoded by rhesus rhadinovirus is similar to ORF74 of Kaposi's sarcoma-associated herpesvirus. J Virol 77, 1738–1746.[CrossRef]
    [Google Scholar]
  20. Fritze, O., Filipek, S., Kuksa, V., Palczewski, K., Hofmann, K. P. & Ernst, O. P. ( 2003; ). Role of the conserved NPxxY(x)5,6F motif in the rhodopsin ground state and during activation. Proc Natl Acad Sci U S A 100, 2290–2295.[CrossRef]
    [Google Scholar]
  21. Gether, U. ( 2000; ). Uncovering molecular mechanisms involved in activation of G protein-coupled receptors. Endocr Rev 21, 90–113.[CrossRef]
    [Google Scholar]
  22. Govaerts, C., Blanpain, C., Deupi, X., Ballet, S., Ballesteros, J. A., Wodak, S. J., Vassart, G., Pardo, L. & Parmentier, M. ( 2001; ). The TXP motif in the second transmembrane helix of CCR5. A structural determinant of chemokine-induced activation. J Biol Chem 276, 13217–13225.[CrossRef]
    [Google Scholar]
  23. Govaerts, C., Bondue, A., Springael, J. Y., Olivella, M., Deupi, X., Le Poul, E., Wodak, S. J., Parmentier, M., Pardo, L. & Blanpain, C. ( 2003; ). Activation of CCR5 by chemokines involves an aromatic cluster between transmembrane helices 2 and 3. J Biol Chem 278, 1892–1903.[CrossRef]
    [Google Scholar]
  24. Hall, T. A. ( 1999; ). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41, 95–98.
    [Google Scholar]
  25. Holloway, S. A., Lindquester, G. J., Studdert, M. J. & Drummer, H. E. ( 1999; ). Identification, sequence analysis and characterisation of equine herpesvirus 5 glycoprotein B. Arch Virol 144, 287–307.[CrossRef]
    [Google Scholar]
  26. Holloway, S. A., Lindquester, G. J., Studdert, M. J. & Drummer, H. E. ( 2000; ). Analysis of equine herpesvirus 2 strain variation using monoclonal antibodies to glyucoprotein B. Arch Virol 145, 1699–1713.[CrossRef]
    [Google Scholar]
  27. Kakoola, D. N., Sheldon, J., Byabazaire, N., Bowden, R. J., Katongole-Mbidde, E., Schulz, T. F. & Davison, A. J. ( 2001; ). Recombination in human herpesvirus-8 strains from Uganda and evolution of the K15 gene. J Gen Virol 82, 2393–2404.
    [Google Scholar]
  28. Kershaw, O., von Oppen, T., Glitz, F., Deegen, E., Ludwig, H. & Borchers, K. ( 2001; ). Detection of equine herpesvirus type 2 (EHV-2) in horses with keratoconjunctivitis. Virus Res 80, 93–99.[CrossRef]
    [Google Scholar]
  29. Kumar, S., Tamura, K., Jakobsen, I. B. & Nei, M. ( 2001; ). mega2: molecular evolutionary genetics analysis software. Bioinformatics 17, 1244–1245.[CrossRef]
    [Google Scholar]
  30. Michel, D., Milotic, I., Wagner, M., Vaida, B., Holl, J., Ansorge, R. & Mertens, T. ( 2005; ). The human cytomegalovirus UL78 gene is highly conserved among clinical isolates, but is dispensable for replication in fibroblasts and a renal artery organ-culture system. J Gen Virol 86, 297–306.[CrossRef]
    [Google Scholar]
  31. Mirzadegan, T., Benko, G., Filipek, S. & Palczewski, K. ( 2003; ). Sequence analyses of G-protein-coupled receptors: similarities to rhodopsin. Biochemistry 42, 2759–2767.[CrossRef]
    [Google Scholar]
  32. Murphy, P. M., Baggiolini, M., Charo, I. F., Hebert, C. A., Horuk, R., Matsushima, K., Miller, L. H., Oppenheim, J. J. & Power, C. A. ( 2000; ). International Union of Pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol Rev 52, 145–176.
    [Google Scholar]
  33. Murray, M. J., Eichorn, E. S., Dubovi, E. J., Ley, W. B. & Cavey, D. M. ( 1996; ). Equine herpesvirus type 2: prevalence and seroepidemiology in foals. Equine Vet J 28, 432–436.[CrossRef]
    [Google Scholar]
  34. Norberg, P., Bergstrom, T., Rekabdar, E., Lindh, M. & Liljeqvist, J. A. ( 2004; ). Phylogenetic analysis of clinical herpes simplex virus type 1 isolates identified three genetic groups and recombinant viruses. J Virol 78, 10755–10764.[CrossRef]
    [Google Scholar]
  35. Nordengrahn, A., Rusvai, M., Merza, M., Ekstrom, J., Morein, B. & Belak, S. ( 1996; ). Equine herpesvirus type 2 (EHV-2) as a predisposing factor for Rhodococcus equi pneumonia in foals: prevention of the bifactorial disease with EHV-2 immunostimulating complexes. Vet Microbiol 51, 55–68.[CrossRef]
    [Google Scholar]
  36. Oliveira, S. A. & Shenk, T. E. ( 2001; ). Murine cytomegalovirus M78 protein, a G protein-coupled receptor homologue, is a constituent of the virion and facilitates accumulation of immediate-early viral mRNA. Proc Natl Acad Sci U S A 98, 3237–3242.[CrossRef]
    [Google Scholar]
  37. Pagamjav, O., Sakata, T., Matsumura, T., Yamaguchi, T. & Fukushi, H. ( 2005; ). Natural recombinant between equine herpesviruses 1 and 4 in the ICP4 gene. Microbiol Immunol 49, 167–179.[CrossRef]
    [Google Scholar]
  38. Paulsen, S. J., Rosenkilde, M. M., Eugen-Olsen, J. & Kledal, T. N. ( 2005; ). Epstein–Barr virus-encoded BILF1 is a constitutively active G protein-coupled receptor. J Virol 79, 536–546.[CrossRef]
    [Google Scholar]
  39. Penfold, M. E., Schmidt, T. L., Dairaghi, D. J., Barry, P. A. & Schall, T. J. ( 2003; ). Characterization of the rhesus cytomegalovirus US28 locus. J Virol 77, 10404–10413.[CrossRef]
    [Google Scholar]
  40. Plummer, G. & Waterson, A. P. ( 1963; ). Equine herpes viruses. Virology 19, 412–416.[CrossRef]
    [Google Scholar]
  41. Plummer, G., Goodheart, C. R. & Studdert, M. J. ( 1973; ). Equine herpesviruses: antigenic relationships and deoxyribonucleic acid densities. Infect Immun 8, 621–627.
    [Google Scholar]
  42. Pond, S. L. & Frost, S. D. ( 2005; ). Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics 21, 2531–2533.[CrossRef]
    [Google Scholar]
  43. Poole, L. J., Zong, J. C., Ciufo, D. M., Alcendor, D. J., Cannon, J. S., Ambinder, R., Orenstein, J. M., Reitz, M. S. & Hayward, G. S. ( 1999; ). Comparison of genetic variability at multiple loci across the genomes of the major subtypes of Kaposi's sarcoma-associated herpesvirus reveals evidence for recombination and for two distinct types of open reading frame K15 alleles at the right-hand end. J Virol 73, 6646–6660.
    [Google Scholar]
  44. Purewal, A. S., Smallwood, A. V., Kaushal, A., Adegboye, D. & Edington, N. ( 1992; ). Identification and control of the cis-acting elements of the immediate early gene of equid herpesvirus type 1. J Gen Virol 73, 513–519.[CrossRef]
    [Google Scholar]
  45. Rasmussen, L., Geissler, A., Cowan, C., Chase, A. & Winters, M. ( 2002; ). The genes encoding the gCIII complex of human cytomegalovirus exist in highly diverse combinations in clinical isolates. J Virol 76, 10841–10848.[CrossRef]
    [Google Scholar]
  46. Rasmussen, L., Geissler, A. & Winters, M. ( 2003; ). Inter- and intragenic variations complicate the molecular epidemiology of human cytomegalovirus. J Infect Dis 187, 809–819.[CrossRef]
    [Google Scholar]
  47. Rizvi, S. M., Slater, J. D., Wolfinger, U., Borchers, K., Field, H. J. & Slade, A. J. ( 1997; ). Detection and distribution of equine herpesvirus 2 DNA in the central and peripheral nervous systems of ponies. J Gen Virol 78, 1115–1118.
    [Google Scholar]
  48. Rosenkilde, M. M., Kledal, T. N., Holst, P. J. & Schwartz, T. W. ( 2000; ). Selective elimination of high constitutive activity or chemokine binding in the human herpesvirus 8 encoded seven transmembrane oncogene ORF74. J Biol Chem 275, 26309–26315.[CrossRef]
    [Google Scholar]
  49. Rosenkilde, M. M., McLean, K. A., Holst, P. J. & Schwartz, T. W. ( 2004; ). The CXC chemokine receptor encoded by herpesvirus saimiri, ECRF3, shows ligand-regulated signaling through Gi, Gq, and G12/13 proteins but constitutive signaling only through Gi and G12/13 proteins. J Biol Chem 279, 32524–32533.[CrossRef]
    [Google Scholar]
  50. Rosenkilde, M. M., Kledal, T. N. & Schwartz, T. W. ( 2005; ). High constitutive activity of a virus-encoded seven transmembrane receptor in the absence of the conserved DRY motif (Asp-Arg-Tyr) in transmembrane helix 3. Mol Pharmacol 68, 11–19.
    [Google Scholar]
  51. Sahagun-Ruiz, A., Sierra-Honigmann, A. M., Krause, P. & Murphy, P. M. ( 2004; ). Simian cytomegalovirus encodes five rapidly evolving chemokine receptor homologues. Virus Genes 28, 71–83.[CrossRef]
    [Google Scholar]
  52. Schynts, F., Meurens, F., Detry, B., Vanderplasschen, A. & Thiry, E. ( 2003; ). Rise and survival of bovine herpesvirus 1 recombinants after primary infection and reactivation from latency. J Virol 77, 12535–12542.[CrossRef]
    [Google Scholar]
  53. Smith, L. M., Shellam, G. R. & Redwood, A. J. ( 2006; ). Genes of murine cytomegalovirus exist as a number of distinct genotypes. Virology 352, 450–465.[CrossRef]
    [Google Scholar]
  54. Swofford, D. L. ( 2003; ). paup*: Phylogenetic Analysis Using Parsimony (*and other methods), version 4. Sunderland, MA: Sinauer Associates.
  55. Telford, E. A., Studdert, M. J., Agius, C. T., Watson, M. S., Aird, H. C. & Davison, A. J. ( 1993; ). Equine herpesviruses 2 and 5 are gamma-herpesviruses. Virology 195, 492–499.[CrossRef]
    [Google Scholar]
  56. Telford, E. A., Watson, M. S., Aird, H. C., Perry, J. & Davison, A. J. ( 1995; ). The DNA sequence of equine herpesvirus 2. J Mol Biol 249, 520–528.[CrossRef]
    [Google Scholar]
  57. Thein, P. & Hartl, G. ( 1976; ). Isolation of a reovirus from a horse with respiratory disease. Zentralbl Veterinarmed B 23, 698–701 (in German).
    [Google Scholar]
  58. Wakeling, M. N., Roy, D. J., Nash, A. A. & Stewart, J. P. ( 2001; ). Characterization of the murine gammaherpesvirus 68 ORF74 product: a novel oncogenic G protein-coupled receptor. J Gen Virol 82, 1187–1197.
    [Google Scholar]
  59. Welch, H. M., Bridges, C. G., Lyon, A. M., Griffiths, L. & Edington, N. ( 1992; ). Latent equid herpesviruses 1 and 4: detection and distinction using the polymerase chain reaction and co-cultivation from lymphoid tissues. J Gen Virol 73, 261–268.[CrossRef]
    [Google Scholar]
  60. Yang, T. Y., Chen, S. C., Leach, M. W., Manfra, D., Homey, B., Wiekowski, M., Sullivan, L., Jenh, C. H., Narula, S. K. & other authors ( 2000; ). Transgenic expression of the chemokine receptor encoded by human herpesvirus 8 induces an angioproliferative disease resembling Kaposi's sarcoma. J Exp Med 191, 445–454.[CrossRef]
    [Google Scholar]
  61. Zong, J., Ciufo, D. M., Viscidi, R., Alagiozoglou, L., Tyring, S., Rady, P., Orenstein, J., Boto, W., Kalumbuja, H. & other authors ( 2002; ). Genotypic analysis at multiple loci across Kaposi's sarcoma herpesvirus (KSHV) DNA molecules: clustering patterns, novel variants and chimerism. J Clin Virol 23, 119–148.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82942-0
Loading
/content/journal/jgv/10.1099/vir.0.82942-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error