1887

Abstract

Human cytomegalovirus-encoded pUL50 and pUL53 belong to a group of conserved herpesviral nuclear proteins. This study describes: (i) the co-localization of pUL50 with components of the nuclear lamina such as lamins A/C and lamin B receptor by double immunofluorescent staining, (ii) a strong pUL50-mediated relocalization of pUL53 from a diffuse nuclear pattern towards a nuclear rim localization, (iii) a direct interaction between pUL50 and pUL53, as well as between pUL50 and protein kinase C (PKC), shown by yeast two-hybrid and co-immunoprecipitation analyses, (iv) phosphorylation of pUL50, which is highly suggestive of PKC activity, and finally (v) partial relocalization of PKC by pUL50/pUL53 from its main cytoplasmic localization to a marked nuclear lamina accumulation. These data suggest a role for pUL50 and pUL53 in the recruitment of PKC, an event that is considered to be important for cytomegalovirus-induced distortion of the nuclear lamina.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82924-0
2007-10-01
2021-01-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/10/2642.html?itemId=/content/journal/jgv/10.1099/vir.0.82924-0&mimeType=html&fmt=ahah

References

  1. Biron K. K., Harvey R. J., Chamberlain S. C., Good S. S., Smith A. A. III, Davis M. G., Talarico C. L., Miller W. H., Ferris R. other authors 2002; Potent and selective inhibition of human cytomegalovirus replication by 1263W94, a benzimidazole l-riboside with a unique mode of action. Antimicrob Agents Chemother 46:2365–2372 [CrossRef]
    [Google Scholar]
  2. Bjerke S. L., Roller R. J. 2006; Roles for herpes simplex virus type 1 UL34 and US3 proteins in disrupting the nuclear lamina during herpes simplex virus type 1 egress. Virology 347:261–276 [CrossRef]
    [Google Scholar]
  3. Bubeck A., Wagner M., Ruzsics Z., Lötzerich M., Iglesias M., Singh I. R., Koszinowski U. H. 2004; Comprehensive mutational analysis of a herpesvirus gene in the viral genome context reveals a region essential for virus replication. J Virol 78:8026–8035 [CrossRef]
    [Google Scholar]
  4. Collas P., Thompson L., Fields A. P., Poccia D. L., Courvalin J. C. 1997; Protein kinase C-mediated interphase lamin B phosphorylation and solubilization. J Biol Chem 272:21274–21280 [CrossRef]
    [Google Scholar]
  5. Curran M., Noble S. 2001; Valganciclovir. Drugs 61:1145–1150 [CrossRef]
    [Google Scholar]
  6. Dal Monte P., Pignatelli S., Zini N., Maraldi N. M., Perret E., Prevost M. C., Landini M. P. 2002; Analysis of intracellular and intraviral localization of the human cytomegalovirus UL53 protein. J Gen Virol 83:1005–1012
    [Google Scholar]
  7. Dunn W., Chou C., Li H., Hai R., Patterson D., Stolc V., Zhu H., Liu F. 2003; Functional profiling of a human cytomegalovirus genome. Proc Natl Acad Sci U S A 100:14223–14228 [CrossRef]
    [Google Scholar]
  8. Durfee T., Becherer K., Chen P. L., Yeh S. H., Yang Y., Kilburn A. E., Lee W. H., Elledge S. J. 1993; The retinoblastoma protein associates with the protein phosphatase type 1 catalytic subunit. Genes Dev 7:555–569 [CrossRef]
    [Google Scholar]
  9. Farina A., Feederle R., Raffa S., Gonnella R., Santarelli R., Frati L., Angeloni A., Torrisi M. R., Faggioni A., Delecluse H. J. 2005; BFRF1 of Epstein–Barr virus is essential for efficient primary viral envelopment and egress. J Virol 79:3703–3712 [CrossRef]
    [Google Scholar]
  10. Fields S., Song O. 1989; A novel genetic system to detect protein–protein interactions. Nature 340:245–246 [CrossRef]
    [Google Scholar]
  11. Fleckenstein B., Müller I., Collins J. 1982; Cloning of the complete human cytomegalovirus genome in cosmids. Gene 18:39–46 [CrossRef]
    [Google Scholar]
  12. Goldman R. D., Gruenbaum Y., Moir R. D., Shumaker D. K., Spann T. P. 2002; Nuclear lamins: building blocks of nuclear architecture. Genes Dev 16:533–547 [CrossRef]
    [Google Scholar]
  13. Gonnella R., Farina A., Santarelli R., Raffa S., Feederle R., Bei R., Granato M., Modesti A., Frati L. other authors 2005; Characterization and intracellular localization of the Epstein–Barr virus protein BFLF2: interactions with BFRF1 and with the nuclear lamina. J Virol 79:3713–3727 [CrossRef]
    [Google Scholar]
  14. Herget T., Freitag M., Morbitzer M., Stamminger T., Marschall M. 2004; A novel chemical class of pUL97 protein kinase-specific inhibitors with strong anti-cytomegaloviral activity. Antimicrob Agents Chemother 48:4154–4162 [CrossRef]
    [Google Scholar]
  15. Kato A., Yamamoto M., Ohno T., Tanaka M., Sata T., Nishiyama Y., Kawaguchi Y. 2006; Herpes simplex virus 1-encoded protein kinase UL13 phosphorylates viral Us3 protein kinase and regulates nuclear localization of viral envelopment factors UL34 and UL31. J Virol 80:1476–1486 [CrossRef]
    [Google Scholar]
  16. Krosky P. M., Baek M. C., Coen D. M. 2003; The human cytomegalovirus UL97 protein kinase, an antiviral drug target, is required at the stage of nuclear egress. J Virol 77:905–914 [CrossRef]
    [Google Scholar]
  17. Lake C. M., Hutt-Fletcher L. M. 2004; The Epstein–Barr virus BFRF1 and BFLF2 proteins interact and coexpression alters their cellular localization. Virology 320:99–106 [CrossRef]
    [Google Scholar]
  18. Liang L., Baines J. D. 2005; Identification of an essential domain in the herpes simplex virus 1 UL34 protein that is necessary and sufficient to interact with UL31 protein. J Virol 79:3797–3806 [CrossRef]
    [Google Scholar]
  19. Lötzerich M., Ruzsics Z., Koszinowski U. H. 2006; Functional domains of murine cytomegalovirus nuclear egress protein M53/p38. J Virol 80:73–84 [CrossRef]
    [Google Scholar]
  20. Marschall M., Stein-Gerlach M., Freitag M., Kupfer R., van den Bogaard M., Stamminger T. 2001; Inhibitors of human cytomegalovirus replication drastically reduce the activity of the viral protein kinase pUL97. J Gen Virol 82:1439–1450
    [Google Scholar]
  21. Marschall M., Stein-Gerlach M., Freitag M., Kupfer R., van den Bogaard M., Stamminger T. 2002; Direct targeting of human cytomegalovirus protein kinase pUL97 by kinase inhibitors is a novel principle of antiviral therapy. J Gen Virol 83:1013–1023
    [Google Scholar]
  22. Marschall M., Marzi A., aus dem Siepen P., Jochmann R., Kalmer M., Auerochs S., Lischka P., Leis M., Stamminger T. 2005; Cellular p32 recruits cytomegalovirus kinase pUL97 to redistribute the nuclear lamina. J Biol Chem 280:33357–33367 [CrossRef]
    [Google Scholar]
  23. Muranyi W., Haas J., Wagner M., Krohne G., Koszinowski U. H. 2002; Cytomegalovirus recruitment of cellular kinases to dissolve the nuclear lamina. Science 297:854–857 [CrossRef]
    [Google Scholar]
  24. Mylonis I., Drosou V., Brancorsini S., Nikolakaki E., Sassone-Corsi P., Giannakouros T. 2004; Temporal association of protamine 1 with the inner nuclear membrane protein lamin B receptor during spermiogenesis. J Biol Chem 279:11626–11631 [CrossRef]
    [Google Scholar]
  25. Pante N., Kann M. 2002; Nuclear pore complex is able to transport macromolecules with diameters of about 39 nm. Mol Biol Cell 13:425–434 [CrossRef]
    [Google Scholar]
  26. Park R., Baines J. D. 2006; Herpes simplex virus type 1 infection induces activation and recruitment of protein kinase C to the nuclear membrane and increased phosphorylation of lamin B. J Virol 80:494–504 [CrossRef]
    [Google Scholar]
  27. Peter M., Nakagawa J., Doree M., Labbe J. C., Nigg E. A. 1990; In vitro disassembly of the nuclear lamina and M phase-specific phosphorylation of lamins by cdc2 kinase. Cell 61:591–602 [CrossRef]
    [Google Scholar]
  28. Prichard M. N., Gao N., Jairath S., Mulamba G., Krosky P., Coen D. M., Parker B. O., Pari G. S. 1999; A recombinant human cytomegalovirus with a large deletion in UL97 has a severe replication deficiency. J Virol 73:5663–5670
    [Google Scholar]
  29. Purves F. C., Spector D., Roizman B. 1992; UL34, the target of the herpes simplex virus US3 protein kinase, is a membrane protein which in its unphosphorylated state associates with novel phosphoproteins. J Virol 66:4295–4303
    [Google Scholar]
  30. Reynolds A. E., Ryckman B. J., Baines J. D., Zhou Y., Liang L., Roller R. J. 2001; UL31 and UL34 proteins of herpes simplex virus type 1 form a complex that accumulates at the nuclear rim and is required for envelopment of nucleocapsids. J Virol 75:8803–8817 [CrossRef]
    [Google Scholar]
  31. Reynolds A. E., Liang L., Baines J. D. 2004; Conformational changes in the nuclear lamina induced by herpes simplex virus type 1 require genes UL31 and UL34. J Virol 78:5564–5575 [CrossRef]
    [Google Scholar]
  32. Robles-Flores M., Rendon-Huerta E., Gonzalez-Aguilar H., Mendoza-Hernandez G., Islas S., Mendoza V., Ponce-Castaneda M. V., Gonzalez-Mariscal L., Lopez-Casillas F. 2002; p32 (gC1qBP) is a general protein kinase C (PKC)-binding protein. J Biol Chem 277:5247–5255 [CrossRef]
    [Google Scholar]
  33. Roller R. J., Zhou Y., Schnetzer R., Ferguson J., DeSalvo D. 2000; Herpes simplex virus type 1 UL34 gene product is required for viral envelopment. J Virol 74:117–129 [CrossRef]
    [Google Scholar]
  34. Rupp B., Ruzsics Z., Buser C., Adler B., Walther P., Koszinowski U. H. 2007; Random screening for dominant-negative mutants of the cytomegalovirus nuclear egress protein M50. J Virol 81:5508–5517 [CrossRef]
    [Google Scholar]
  35. Ryckman B. J., Roller R. J. 2004; Herpes simplex virus type 1 primary envelopment: UL34 protein modification and the US3–UL34 catalytic relationship. J Virol 78:399–412 [CrossRef]
    [Google Scholar]
  36. Sanchez V., Spector D. H. 2002; CMV makes a timely exit. Science 297:778–779 [CrossRef]
    [Google Scholar]
  37. Shiba C., Daikoku T., Goshima F., Takakuwa H., Yamauchi Y., Koiwai O., Nishiyama Y. 2000; The UL34 gene product of herpes simplex virus type 2 is a tail-anchored type II membrane protein that is significant for virus envelopment. J Gen Virol 81:2397–2405
    [Google Scholar]
  38. Storz P., Hausser A., Link G., Dedio J., Ghebrehiwet B., Pfizenmaier K., Johannes F. J. 2000; Protein kinase  μ is regulated by the multifunctional chaperon protein p32. J Biol Chem 275:24601–24607 [CrossRef]
    [Google Scholar]
  39. Swan S. K., Smith W. B., Marbury T. C., Schumacher M., Dougherty C., Mico B. A., Villano S. A. 2007; Pharmacokinetics of maribavir, a novel oral anticytomegalovirus agent, in subjects with varying degrees of renal impairment. J Clin Pharmacol 47:209–217 [CrossRef]
    [Google Scholar]
  40. Wang L. H., Peck R. W., Yin Y., Allanson J., Wiggs R., Wire M. B. 2003; Phase I safety and pharmacokinetic trials of 1263W94, a novel oral anti-human cytomegalovirus agent, in healthy and human immunodeficiency virus-infected subjects. Antimicrob Agents Chemother 47:1334–1342 [CrossRef]
    [Google Scholar]
  41. Wolf D. G., Courcelle C. T., Prichard M. N., Mocarski E. S. 2001; Distinct and separate roles for herpesvirus-conserved UL97 kinase in cytomegalovirus DNA synthesis and encapsidation. Proc Natl Acad Sci U S A 98:1895–1900 [CrossRef]
    [Google Scholar]
  42. Yu D., Silva M. C., Shenk T. 2003; Functional map of human cytomegalovirus AD169 defined by global mutational analysis. Proc Natl Acad Sci U S A 100:12396–12401 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82924-0
Loading
/content/journal/jgv/10.1099/vir.0.82924-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error