1887

Abstract

In infected cells, hepatitis C virus (HCV) core protein is targeted to lipid droplets, which serve as intracellular storage organelles. Using a tissue culture system to generate infectious HCV, we have shown that the coating of lipid droplets by the core protein occurs in a time-dependent manner and coincides with higher rates of virus production. At earlier times, the protein was located at punctate sites in close proximity to the edge of lipid droplets. Investigations by using Z-stack analysis have shown that many lipid droplets contained a single punctate site that could represent positions where core transfers from the endoplasmic reticulum membrane to droplets. The effects of lipid droplet association on virus production were studied by introducing mutations into the domain D2, the C-terminal region of the core protein necessary for droplet attachment. Alteration of a phenylalanine residue that was crucial for lipid droplet association generated an unstable form of the protein that could only be detected in the presence of a proteasome inhibitor. Moreover, converting two proline residues in D2 to alanines blocked coating of lipid droplets by core, although the protein was directed to punctate sites that were indistinguishable from those observed at early times for wild-type core protein. Neither of these virus mutants gave rise to virus progeny. By contrast, mutation at a cysteine residue positioned 2 aa upstream of the phenylalanine residue did not affect lipid droplet localization and produced wild-type levels of infectious progeny. Taken together, our findings indicate that lipid droplet association by core is connected to virus production.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82898-0
2007-08-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/8/2204.html?itemId=/content/journal/jgv/10.1099/vir.0.82898-0&mimeType=html&fmt=ahah

References

  1. Alexander, L. G., Sessions, R. B., Clarke, A. R., Tatham, A. S., Shewry, P. R. & Napier, J. A. ( 2002; ). Characterization and modelling of the hydrophobic domain of a sunflower oleosin. Planta 214, 546–551.[CrossRef]
    [Google Scholar]
  2. Barba, G., Harper, F., Harada, T., Kohara, M., Goulinet, S., Matsuura, Y., Eder, G., Schaff, Z., Chapman, M. J. & other authors ( 1997; ). Hepatitis C virus core protein shows a cytoplasmic localization and associates to cellular lipid storage droplets. Proc Natl Acad Sci U S A 94, 1200–1205.[CrossRef]
    [Google Scholar]
  3. Bartenschlager, R. & Lohmann, V. ( 2000; ). Replication of hepatitis C virus. J Gen Virol 81, 1631–1648.
    [Google Scholar]
  4. Boulant, S., Vanbelle, C., Ebel, C., Penin, F. & Lavergne, J. P. ( 2005; ). Hepatitis C virus core protein is a dimeric alpha-helical protein exhibiting membrane protein features. J Virol 79, 11353–11365.[CrossRef]
    [Google Scholar]
  5. Boulant, S., Montserret, R., Hope, R. G., Ratinier, M., Targett-Adams, P., Lavergne, J. P., Penin, F. & McLauchlan, J. ( 2006; ). Structural determinants that target the hepatitis C virus core protein to lipid droplets. J Biol Chem 281, 22236–22247.[CrossRef]
    [Google Scholar]
  6. Fujimoto, Y., Itabe, H., Sakai, J., Makita, M., Noda, J., Mori, M., Higashi, Y., Kojima, S. & Takano, T. ( 2004; ). Identification of major proteins in the lipid droplet-enriched fraction isolated from the human hepatocyte cell line HuH7. Biochim Biophys Acta 1644, 47–59.[CrossRef]
    [Google Scholar]
  7. Glasgow, G. M., McGee, M. M., Sheahan, B. J. & Atkins, G. J. ( 1997; ). Death mechanisms in cultured cells infected by Semliki Forest virus. J Gen Virol 78, 1559–1563.
    [Google Scholar]
  8. Glasgow, G. M., McGee, M. M., Tarbatt, C. J., Mooney, D. A., Sheahan, B. J. & Atkins, G. J. ( 1998; ). The Semliki Forest virus vector induces p53-independent apoptosis. J Gen Virol 79, 2405–2410.
    [Google Scholar]
  9. Hoofnagle, J. H. ( 2002; ). Course and outcome of hepatitis C. Hepatology 36, S21–S29.
    [Google Scholar]
  10. Hope, R. G. & McLauchlan, J. ( 2000; ). Sequence motifs required for lipid droplet association and protein stability are unique to the hepatitis C virus core protein. J Gen Virol 81, 1913–1925.
    [Google Scholar]
  11. Hope, R. G., Murphy, D. J. & McLauchlan, J. ( 2002; ). The domains required to direct core proteins of hepatitis C virus and GB virus-B to lipid droplets share common features with plant oleosin proteins. J Biol Chem 277, 4261–4270.[CrossRef]
    [Google Scholar]
  12. Hope, R. G., McElwee, M. J. & McLauchlan, J. ( 2006; ). Efficient cleavage by signal peptide peptidase requires residues within the signal peptide between the core and E1 proteins of hepatitis C virus strain J1. J Gen Virol 87, 623–627.[CrossRef]
    [Google Scholar]
  13. Hussy, P., Langen, H., Mous, J. & Jacobsen, H. ( 1996; ). Hepatitis C virus core protein: carboxy-terminal boundaries of two processed species suggest cleavage by a signal peptide peptidase. Virology 224, 93–104.[CrossRef]
    [Google Scholar]
  14. Lacey, D. J., Wellner, N., Beaudoin, F., Napier, J. A. & Shewry, P. R. ( 1998; ). Secondary structure of oleosins in oil bodies isolated from seeds of safflower (Carthamus tinctorius L.) and sunflower (Helianthus annuus L.). Biochem J 334, 469–477.
    [Google Scholar]
  15. Lemberg, M. K. & Martoglio, B. ( 2002; ). Requirements for signal peptide peptidase-catalyzed intramembrane proteolysis. Mol Cell 10, 735–744.[CrossRef]
    [Google Scholar]
  16. Lindenbach, B. D., Evans, M. J., Syder, A. J., Wolk, B., Tellinghuisen, T. L., Liu, C. C., Maruyama, T., Hynes, R. O., Burton, D. R. & other authors ( 2005; ). Complete replication of hepatitis C virus in cell culture. Science 309, 623–626.[CrossRef]
    [Google Scholar]
  17. Macdonald, A., Crowder, K., Street, A., McCormick, C., Saksela, K. & Harris, M. ( 2003; ). The hepatitis C virus non-structural NS5A protein inhibits activating protein-1 function by perturbing ras-ERK pathway signaling. J Biol Chem 278, 17775–17784.[CrossRef]
    [Google Scholar]
  18. Martin, S. & Parton, R. G. ( 2005; ). Caveolin, cholesterol, and lipid bodies. Semin Cell Dev Biol 16, 163–174.[CrossRef]
    [Google Scholar]
  19. Martin, S., Driessen, K., Nixon, S. J., Zerial, M. & Parton, R. G. ( 2005; ). Regulated localization of Rab18 to lipid droplets: effects of lipolytic stimulation and inhibition of lipid droplet catabolism. J Biol Chem 280, 42325–42335.[CrossRef]
    [Google Scholar]
  20. McLauchlan, J. ( 2000; ). Properties of the hepatitis C virus core protein: a structural protein that modulates cellular processes. J Viral Hepat 7, 2–14.[CrossRef]
    [Google Scholar]
  21. McLauchlan, J., Lemberg, M. K., Hope, G. & Martoglio, B. ( 2002; ). Intramembrane proteolysis promotes trafficking of hepatitis C virus core protein to lipid droplets. EMBO J 21, 3980–3988.[CrossRef]
    [Google Scholar]
  22. Moradpour, D., Englert, C., Wakita, T. & Wands, J. R. ( 1996; ). Characterization of cell lines allowing tightly regulated expression of hepatitis C virus core protein. Virology 222, 51–63.[CrossRef]
    [Google Scholar]
  23. Murphy, D. J. ( 2001; ). The biogenesis and functions of lipid bodies in animals, plants and microorganisms. Prog Lipid Res 40, 325–438.[CrossRef]
    [Google Scholar]
  24. Murphy, F. A., Fauquet, C. M., Bishop, D. H. L., Ghabrial, S. A., Jarvis, A. W., Martelli, G. P., Mayo, M. A. & Summers, M. D. (editors) ( 1995; ). Virus Taxonomy. Sixth Report of the International Committee on Taxonomy of Viruses, pp. 424–426. Vienna, New York: Springer-Verlag.
  25. Okamoto, K., Moriishi, K., Miyamura, T. & Matsuura, Y. ( 2004; ). Intramembrane proteolysis and endoplasmic reticulum retention of hepatitis C virus core protein. J Virol 78, 6370–6380.[CrossRef]
    [Google Scholar]
  26. Okuda, M., Li, K., Beard, M. R., Showalter, L. A., Scholle, F., Lemon, S. M. & Weinman, S. A. ( 2002; ). Mitochondrial injury, oxidative stress, and antioxidant gene expression are induced by hepatitis C virus core protein. Gastroenterology 122, 366–375.[CrossRef]
    [Google Scholar]
  27. Ozeki, S., Cheng, J., Tauchi-Sato, K., Hatano, N., Taniguchi, H. & Fujimoto, T. ( 2005; ). Rab18 localizes to lipid droplets and induces their close apposition to the endoplasmic reticulum-derived membrane. J Cell Sci 118, 2601–2611.[CrossRef]
    [Google Scholar]
  28. Penin, F., Dubuisson, J., Rey, F. A., Moradpour, D. & Pawlotsky, J. M. ( 2004; ). Structural biology of hepatitis C virus. Hepatology 39, 5–19.[CrossRef]
    [Google Scholar]
  29. Robenek, H., Robenek, M. J., Buers, I., Lorkowski, S., Hofnagel, O., Troyer, D. & Severs, N. J. ( 2005; ). Lipid droplets gain PAT family proteins by interaction with specialized plasma membrane domains. J Biol Chem 280, 26330–26338.[CrossRef]
    [Google Scholar]
  30. Robenek, H., Hofnagel, O., Buers, I., Robenek, M. J., Troyer, D. & Severs, N. J. ( 2006; ). Adipophilin-enriched domains in the ER membrane are sites of lipid droplet biogenesis. J Cell Sci 119, 4215–4224.[CrossRef]
    [Google Scholar]
  31. Rouille, Y., Helle, F., Delgrange, D., Roingeard, P., Voisset, C., Blanchard, E., Belouzard, S., McKeating, J., Patel, A. H. & other authors ( 2006; ). Subcellular localization of hepatitis C virus structural proteins in a cell culture system that efficiently replicates the virus. J Virol 80, 2832–2841.[CrossRef]
    [Google Scholar]
  32. Sato, S., Fukasawa, M., Yamakawa, Y., Natsume, T., Suzuki, T., Shoji, I., Aizaki, H., Miyamura, T. & Nishijima, M. ( 2006; ). Proteomic profiling of lipid droplet proteins in hepatoma cell lines expressing hepatitis C virus core protein. J Biochem (Tokyo) 139, 921–930.[CrossRef]
    [Google Scholar]
  33. Schwer, B., Ren, S., Pietschmann, T., Kartenbeck, J., Kaehlcke, K., Bartenschlager, R., Yen, T. S. & Ott, M. ( 2004; ). Targeting of hepatitis C virus core protein to mitochondria through a novel C-terminal localization motif. J Virol 78, 7958–7968.[CrossRef]
    [Google Scholar]
  34. Shirakura, M., Murakami, K., Ichimura, T., Suzuki, R., Shimoji, T., Fukuda, K., Abe, K., Sato, S., Fukasawa, M. & other authors ( 2007; ). The E6AP ubiquitin ligase mediates ubiquitylation and degradation of hepatitis C virus core protein. J Virol 81, 1174–1185.[CrossRef]
    [Google Scholar]
  35. Suzuki, R., Sakamoto, S., Tsutsumi, T., Rikimaru, A., Tanaka, K., Shimoike, T., Moriishi, K., Iwasaki, T., Mizumoto, K. & other authors ( 2005; ). Molecular determinants for subcellular localization of hepatitis C virus core protein. J Virol 79, 1271–1281.[CrossRef]
    [Google Scholar]
  36. Targett-Adams, P., Chambers, D., Gledhill, S., Hope, R. G., Coy, J. F., Girod, A. & McLauchlan, J. ( 2003; ). Live cell analysis and targeting of the lipid droplet-binding adipocyte differentiation-related protein. J Biol Chem 278, 15998–16007.[CrossRef]
    [Google Scholar]
  37. Wakita, T., Pietschmann, T., Kato, T., Date, T., Miyamoto, M., Zhao, Z., Murthy, K., Habermann, A., Krausslich, H. G. & other authors ( 2005; ). Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat Med 11, 791–796.[CrossRef]
    [Google Scholar]
  38. Yasui, K., Wakita, T., Tsukiyama-Kohara, K., Funahashi, S. I., Ichikawa, M., Kajita, T., Moradpour, D., Wands, J. R. & Kohara, M. ( 1998; ). The native form and maturation process of hepatitis C virus core protein. J Virol 72, 6048–6055.
    [Google Scholar]
  39. Zhong, J., Gastaminza, P., Cheng, G., Kapadia, S., Kato, T., Burton, D. R., Wieland, S. F., Uprichard, S. L., Wakita, T. & Chisari, F. V. ( 2005; ). Robust hepatitis C virus infection in vitro. Proc Natl Acad Sci U S A 102, 9294–9299.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82898-0
Loading
/content/journal/jgv/10.1099/vir.0.82898-0
Loading

Data & Media loading...

Supplements

vol. , part 8, pp. 2204 - 2213

The effect of lipid droplet accumulation on the intracellular distribution of wt JFH1 and JFH1DP core proteins [PDF file](7488 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error