1887

Abstract

Adeno-associated virus (AAV) undergoes preferential Rep-mediated integration into the AAVS1 region of human chromosome 19 during latent infection, at least in highly-selected cell cultures. However, integration at the level of the whole eukaryotic genome in unselected cells has not yet been monitored for AAV as it has been for retro- and lentiviruses. Here we have used ligation-mediated PCR (LMPCR) to monitor the formation of AAV–chromosome junctions within unselected genomic DNA after infection. Our analyses show that, in the absence of selection, the complexity of junction formation is much greater than for selected cells. Sequencing of more than 50 authentic LMPCR clones showed that AAV formed junctions with many different chromosomal sites via DNA micro-homologies that frequently involved GGTC motifs located within the AAV p5 element. One site at position 280 was preferred. Even greater complexity was found when unselected junctions identified by LMPCR were analysed by direct PCR amplification and cloning of genomic DNA. No clones containing AAV–AAVS1 chromosome 19 junctions were identified among the LMPCR clones, although they were readily obtained using chromosomal PCR primers, suggesting that junctions with AAVS1 constituted only a small portion of the total. Thus, we have identified an additional means by which AAV sequences may join to human chromosomes, although the detailed molecular mechanisms remain to be elucidated. These data may have implications for the design of new-generation AAV vectors.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82880-0
2007-06-01
2024-12-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/6/1722.html?itemId=/content/journal/jgv/10.1099/vir.0.82880-0&mimeType=html&fmt=ahah

References

  1. Cameron F. H., Moghaddam M. J., Bender V. J., Whittaker R. G., Mott M., Lockett T. J. 1999; A transfection compound series based on a versatile Tris linkage. Biochim Biophys Acta 1417:37–50 [CrossRef]
    [Google Scholar]
  2. Flotte T. R., Carter B. J. 1995; Adeno-associated virus vectors for gene therapy. Gene Ther 2:357–362
    [Google Scholar]
  3. Halbert C. L., Standaert T., Aitken M., Alexander I., Russell D., Miller A. 1997; Transduction by adeno-associated virus vectors in the rabbit airway: efficiency, persistence, and readministration. J Virol 71:5932–5941
    [Google Scholar]
  4. Hamilton H., Gomos J., Berns K. I., Falck-Pedersen E. 2004; Adeno-associated virus site-specific integration and AAVS1 disruption. J Virol 78:7874–7882 [CrossRef]
    [Google Scholar]
  5. Huser D., Weger S., Heilbronn R. 2002; Kinetics and frequency of adeno-associated virus site-specific integration into human chromosome 19 monitored by quantitative real-time PCR. J Virol 76:7554–7559 [CrossRef]
    [Google Scholar]
  6. Kearns W. G., Afione S., Fiulmer S., Pang M., Erikson D., Egan M., Landrum M., Flotte T., Cutting G. 1996; Recombinant adeno-associated virus (AAV-CFTR) vectors do not integrate in a site-specific fashion in an immortalized epithelial cell line. Gene Ther 3:748–755
    [Google Scholar]
  7. Khatri A., Xu Z. Z., Both G. W. 1997; Gene expression by atypical recombinant ovine adenovirus vectors during abortive infection of human and animal cells in vitro. Virology 239:226–237 [CrossRef]
    [Google Scholar]
  8. Kotin R. M., Siniscalco M., Samulski R., Zhu X., Hunter L., Laughlin C., McLaughlin S., Muzyczka N., Rocchi M., Berns K. 1990; Site-specific integration by adeno-associated virus. Proc Natl Acad Sci U S A 87:2211–2215 [CrossRef]
    [Google Scholar]
  9. Lockett L. J., Both G. W. 2002; Complementation of a defective human adenovirus by an otherwise incompatible ovine adenovirus recombinant carrying a functional E1A gene. Virology 294:333–341 [CrossRef]
    [Google Scholar]
  10. McCarty D. M., Young S. M., Samulski R. J. 2004; Integration of adeno-associated virus (AAV) and recombinant AAV vectors. Annu Rev Genet 38:819–845 [CrossRef]
    [Google Scholar]
  11. Mehrle S., Rohde V., Schlehofer J. R. 2004; Evidence of chromosomal integration of AAV DNA in human testis tissue. Virus Genes 28:61–69 [CrossRef]
    [Google Scholar]
  12. Miller D. G., Rutledge E. A., Russell D. W. 2002; Chromosomal effects of adeno-associated virus vector integration. Nat Genet 30:147–148 [CrossRef]
    [Google Scholar]
  13. Miller D. G., Petek L. M., Russell D. W. 2004; Adeno-associated virus vectors integrate at chromosome breakage sites. Nat Genet 36:767–773 [CrossRef]
    [Google Scholar]
  14. Miller D. G., Trobridge G. D., Petek L. M., Jacobs M. A., Kaul R., Russell D. W. 2005; Large-scale analysis of adeno-associated virus vector integration sites in normal human cells. J Virol 79:11434–11442 [CrossRef]
    [Google Scholar]
  15. Monahan P. E., Samulski R. J. 2000; AAV vectors: is clinical success on the horizon?. Gene Ther 7:24–30 [CrossRef]
    [Google Scholar]
  16. Nakai H., Wu X., Fuess S., Storm T. A., Munroe D., Montini E., Burgess S. M., Grompe M., Kay M. A. 2005; Large-scale molecular characterization of adeno-associated virus vector integration in mouse liver. J Virol 79:3606–3614 [CrossRef]
    [Google Scholar]
  17. Narezkina A., Taganov K. D., Litwin S., Stoyanova R., Hayashi J., Seeger C., Skalka A. M., Katz R. A. 2004; Genome-wide analyses of avian sarcoma virus integration sites. J Virol 78:11656–11663 [CrossRef]
    [Google Scholar]
  18. Philpott N. J., Giraud-Wali C., Dupuis C., Gomos J., Hamilton H., Berns K. I., Falck-Pedersen E. 2002a; Efficient integration of recombinant adeno-associated virus DNA vectors requires a p5- rep sequence in cis . J Virol 76:5411–5421 [CrossRef]
    [Google Scholar]
  19. Philpott N. J., Gomos J., Berns K. I., Falck-Pedersen E. 2002b; A p5 integration efficiency element mediates Rep-dependent integration into AAVS1 at chromosome 19. Proc Natl Acad Sci U S A 99:12381–12385 [CrossRef]
    [Google Scholar]
  20. Recchia A., Perani L., Sartori D., Olgiati C., Mavilio F. 2004; Site-specific integration of functional transgenes into the human genome by adeno/AAV hybrid vectors. Mol Ther 10:660–670 [CrossRef]
    [Google Scholar]
  21. Schnepp B. C., Jensen R. L., Chen C.-L., Johnson P. R., Clark K. R. 2005; Characterization of adeno-associated virus genomes isolated from human tissues. J Virol 79:14793–14803 [CrossRef]
    [Google Scholar]
  22. Schroder A. R. W., Shinn P., Chen H., Berry C., Ecker J. R., Bushman F. 2002; HIV-1 integration in the human genome favors active genes and local hotspots. Cell 110:521–529 [CrossRef]
    [Google Scholar]
  23. Surosky R. T., Urabe M., Godwin S., McQuiston S., Kurtzman G., Ozawa K., Natsoulis G. 1997; Adeno-associated virus Rep proteins target DNA sequences to a unique locus in the human genome. J Virol 71:7951–7959
    [Google Scholar]
  24. Tsunoda H., Hayakawa T., Sakuragawa N., Koyama H. 2000; Site-specific integration of adeno-associated virus-based plasmid vectors in lipofected HeLa cells. Virology 268:391–401 [CrossRef]
    [Google Scholar]
  25. Urabe M., Kogure K., Kume A., Sato Y., Tobita K., Ozawa K. 2003; Positive and negative effects of adeno-associated virus Rep on AAVS1-targeted integration. J Gen Virol 84:2127–2132 [CrossRef]
    [Google Scholar]
  26. Wu X., Li Y., Crise B., Burgess S. M. 2003; Transcription start regions in the human genome are favored targets for MLV integration. Science 300:1749–1751 [CrossRef]
    [Google Scholar]
  27. Yang C. C., Xiao X., Zhu X., Ansardi D., Epstein N., Frey M., Matera A., Samulski R. 1997; Cellular recombination pathways and viral terminal repeat hairpin structures are sufficient for adeno-associated virus integration in vivo and in vitro. J Virol 71:9231–9247
    [Google Scholar]
  28. Zhou X., Muzyczka N. 1998; In vitro packaging of adeno-associated virus DNA. J Virol 72:3241–3247
    [Google Scholar]
/content/journal/jgv/10.1099/vir.0.82880-0
Loading
/content/journal/jgv/10.1099/vir.0.82880-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error