1887

Abstract

Isolates of two distinct begomovirus species, the severe strain of the species (tomato leaf curl New Delhi virus-[India:New Delhi:Severe:1992]; ToLCNDV-[IN:ND:Svr:92], bipartite) and the Varanasi strain of the species (tomato leaf curl Gujarat virus-[India:Varanasi:2001]; ToLCGV-[IN:Var:01], mono/bipartite) infect tomato () and cause severe yield losses in northern India. This study investigated the infectivity properties of genomic components of these two species. Both pseudorecombinants were infectious in , and . Enhanced pathogenicity was observed when DNA-A of ToLCNDV-[IN:ND:Svr:92] was -complemented with ToLCGV-[IN:Var:01] DNA-B, and was consistently associated with an increase in accumulation of ToLCGV-[IN:Var:01] DNA-B. Mixed infection of ToLCNDV-[IN:ND:Svr:92] and ToLCGV-[IN:Var:01] always showed extremely severe symptoms, suggesting a synergistic interaction between these two viruses. Southern blot analysis of viral DNAs from infected plants showed a significantly higher level of accumulation of both ToLCNDV components and DNA-B of ToLCGV-[IN:Var:01] with no alteration to levels of DNA-A of ToLCGV-[IN:Var:01]. Symptom development and/or higher infectivity of the supervirulent pseudorecombinants correlated with the increased levels of DNA-B accumulation. Protoplast replication assays revealed that enhanced infectivity by the pseudorecombinant occurred at the level of replication, as DNA-A of ToLCNDV-[IN:ND:Svr:92] enhanced ToLCGV-[IN:Var:01] DNA-B replication, whose accumulation was in turn increased by ToLCGV-[IN:Var:01] DNA-A. This is the first report demonstrating a virulent pseudorecombinant between two distinct species of begomoviruses that infect tomato, and is the second report on synergism between begomoviruses. The results revealed that ToLCGV-[IN:Var:01] DNA-B is capable of associating with different DNA-A components, despite having different iteron sequences.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82873-0
2008-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/3/818.html?itemId=/content/journal/jgv/10.1099/vir.0.82873-0&mimeType=html&fmt=ahah

References

  1. Calvert L. A., Ghabrial S. A. 1983; Enhancement by soybean mosaic virus of bean pod mottle virus titer in doubly infected soybean. Phytopathology 73:992–997 [CrossRef]
    [Google Scholar]
  2. Chakraborty S., Pandey P. K., Banerjee M. K., Kalloo G., Fauquet C. M. 2003a; A new begomovirus species causing tomato leaf curl disease in Varanasi, India. Plant Dis 87:313
    [Google Scholar]
  3. Chakraborty S., Pandey P. K., Banerjee M. K., Kalloo G., Fauquet C. M. 2003b; Tomato leaf Gujarat virus, a new begomovirus species causing a severe leaf curl disease of tomato in Varanasi, India. Phytopathology 93:1485–1496 [CrossRef]
    [Google Scholar]
  4. Chatchawankanphanich O., Maxwell D. P. 2002; Tomato leaf curl Karnataka virus from Bangalore, India, appears to be a recombinant begomovirus. Phytopathology 92:637–645 [CrossRef]
    [Google Scholar]
  5. Chatterji A., Padidam M., Beachy R. N., Fauquet C. M. 1999; Identification of replication specificity determinance in tomato leaf curl virus from New Delhi. J Virol 73:5481–5489
    [Google Scholar]
  6. Chatterji A., Chatterji U., Beachy R. N., Fauquet C. M. 2000; Sequence parameters that determine specificity of binding of the replication-associated protein to its cognate in two strains of Tomato leaf curl virus-New Delhi . Virology 273:341–350 [CrossRef]
    [Google Scholar]
  7. Damirdagh I. S., Ross A. F. 1967; A marked synergistic interaction of potato viruses X and Y in inoculated leaves of tobacco. Virology 31:296–307 [CrossRef]
    [Google Scholar]
  8. Dellaporta S. L., Woods J., Hicks J. B. 1983; A plant DNA minipreparation: version II. Plant Mol Biol Rep 1:19–21 [CrossRef]
    [Google Scholar]
  9. Dry I. B., Rigden J. E., Krake L. R., Mullineaux P. M., Rezaian M. A. 1993; Nucleotide sequence and genome organization of tomato leaf curl geminivirus. J Gen Virol 74:147–151 [CrossRef]
    [Google Scholar]
  10. Eagle P. A., Orozco B. M., Hanley-Bowdoin L. 1994; A DNA sequence required for geminivirus replication also mediates transcriptional regulation. Plant Cell 6:1157–1170 [CrossRef]
    [Google Scholar]
  11. Faria J. C., Gilbertson R. L., Hanson S. F., Morales F. J., Ahlquist P., Loniello O., Maxwell D. P. 1994; Bean golden mosaic geminivirus type III isolates from the Dominican Republic and Guatemala: nucleotide sequences, infectious pseudorecombinants, and phylogenetic relationships. Phytopathology 84:321–329 [CrossRef]
    [Google Scholar]
  12. Fauquet C. M., Stanley J. 2003; Geminivirus classification and nomenclature: progress and problems. Ann Appl Biol 142:165–189 [CrossRef]
    [Google Scholar]
  13. Fauquet C. M., Bisaro D. M., Briddon R. W., Brown J. K., Harrison B. D., Rybicki E. P., Stenger D. C., Stanley J. 2003; Revision of taxonomic criteria for species demarcation in the family Geminiviridae , and an updated list of begomovirus species. Arch Virol 148:405–421 [CrossRef]
    [Google Scholar]
  14. Feinberg A. P., Vogelstein B. 1983; A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Ann Biochem 132:6–13 [CrossRef]
    [Google Scholar]
  15. Fondong V. N., Pita J. S., Rey M. E. C., de Kochko A., Beachy R. N., Fauquet C. M. 2000; Evidence of synergism between African cassava mosaic virus and a new double-recombinant geminivirus infecting cassava in Cameroon. J Gen Virol 81:287–297
    [Google Scholar]
  16. Fromm M. E., Taylor L. P., Walbot V. 1986; Stable transformation of maize after gene transfer by electroporation. Nature 319:791–793 [CrossRef]
    [Google Scholar]
  17. Gilbertson R. L., Hidayat S. H., Paplomatas E. J., Rojas M. R., Hou Y.-M., Maxwell D. P. 1993; Pseudorecombination between infectious cloned DNA components of tomato mottle and bean dwarf mosaic geminiviruses. J Gen Virol 74:23–31 [CrossRef]
    [Google Scholar]
  18. Goldberg K. B., Brakke M. K. 1987; Concentration of maize chlorotic mottle virus increased in mixed infections with maize dwarf mosaic virus, strain B. Phytopathology 77:162–167 [CrossRef]
    [Google Scholar]
  19. Harrison B. D., Zhou X., Otim-Nape G. W., Liu Y., Robinson D. J. 1997; Role of a novel type double infection in the geminivirus-induced epidemic of severe cassava mosaic in Uganda. Ann Appl Biol 131:437–448 [CrossRef]
    [Google Scholar]
  20. Ingham D. J., Lazarowitz S. G. 1993; A single missense mutation in the BR1 movement protein alters the host range of squash leaf curl virus. Virology 196:694–770 [CrossRef]
    [Google Scholar]
  21. Laufs J., Jupin I., David C., Schumacher S., Heyraud-Nitschke F., Gronenborn B. 1995; Geminivirus replication: genetic and biochemical characterization of Rep protein function, a review. Biochimie 77:765–773 [CrossRef]
    [Google Scholar]
  22. Lazarowitz S. G. 1991; Molecular characterization of two bipartite geminiviruses causing squash leaf curl disease: role of viral replication and movement functions in determining host range. Virology 180:70–80 [CrossRef]
    [Google Scholar]
  23. Muniyappa V., Venkatesh H. M., Ramappa H. K., Kulkarni R. S., Zeidan M., Tarba C. Y., Ghanim M., Czosnek H. 2000; Tomato leaf curl virus from Bangalore (ToLCV-Ban4): sequence comparison with Indian ToLCV isolates, detection in plants and insects, and vector relationships. Arch Virol 145:1583–1598 [CrossRef]
    [Google Scholar]
  24. Navot N., Pichersky E., Zeidan M., Zamir D., Czosnek H. 1991; Tomato yellow leaf virus: a whitefly-transmitted geminivirus with a single genomic component. Virology 185:151–161 [CrossRef]
    [Google Scholar]
  25. Padidam M., Beachy R. N., Fauquet C. M. 1995; Tomato leaf curl geminivirus from India has a bipartite genome and coat protein is not essential for infectivity. J Gen Virol 76:25–35 [CrossRef]
    [Google Scholar]
  26. Pita J. S., Fondong V. N., Sangare A., Otim-Nape G. W., Ogwal S., Fauquet C. M. 2001; Recombination, pseudorecombination and synergism of geminiviruses are the determinant keys to the epidemic of severe cassava mosaic disease in Uganda. J Gen Virol 82:655–665
    [Google Scholar]
  27. Sanderfoot A. A., Lazarowitz S. G. 1996; Getting it together in plant virus movement: cooperative interactions between bipartite geminivirus movement proteins. Trends Cell Biol 6:353–358 [CrossRef]
    [Google Scholar]
  28. Srivastava K. M., Hallan V., Raizada R. K., Chandra G., Singh B. P., Sane P. V. 1995; Molecular cloning of Indian tomato leaf curl virus genome following a simple method of concentrating the supercoiled replicative form of viral DNA. J Virol Methods 51:297–304 [CrossRef]
    [Google Scholar]
  29. Stanley J., Townsend R., Curson S. J. 1985; Pseudorecombinants between cloned DNAs of two isolates of cassava latent virus. J Gen Virol 66:1055–1061 [CrossRef]
    [Google Scholar]
  30. Stanley J., Bisaro D. M., Briddon R. W., Brown J. K., Fauquet C. M., Harrison B. D., Rybicki E. P., Stenger D. C. 2005; Geminiviridae . In Virus Taxonomy. Eighth Report of the International Committee on Taxonomy of Viruses pp. 301–326Edited by Fauquet C. M., Mayo M. A., Maniloff J., Desselberger U., Ball L. A. London: Elsevier/Academic Press;
    [Google Scholar]
  31. Sunter G., Bisaro D. M. 1991; Transactivation in a geminivirus: AL2 gene product is needed for coat protein expression. Virology 180:416–419 [CrossRef]
    [Google Scholar]
  32. Sunter G., Bisaro D. M. 1992; Transactivation of geminivirus AR1 and BR1 gene expression by the viral AL2 gene product occurs at the level of transcription. Plant Cell 4:1321–1331 [CrossRef]
    [Google Scholar]
  33. Sunter G., Harititz M. D., Hormuzdi S. G., Brough C. L., Bisaro D. M. 1990; Genetic analysis of tomato golden mosaic virus: ORF AL2 is required for coat protein accumulation while ORF AL3 is necessary for efficient DNA replication. Virology 179:69–77 [CrossRef]
    [Google Scholar]
  34. Van Wezel R., Dong X., Blake P., Stanley J., Hong Y. 2002; Differential roles of geminivirus Rep and AC4 (C4) in the induction of necrosis in Nicotiana benthamiana . Mol Plant Pathol 3:461–471 [CrossRef]
    [Google Scholar]
  35. Vance V. B. 1991; Replication of potato virus X RNA is altered in coinfections with potato virus Y. Virology 182:486–494 [CrossRef]
    [Google Scholar]
  36. Vance V. B., Berger P. H., Carrington J. C., Hunt A. G., Shi X. M. 1995; 5′ promximal potyviral sequences mediate potato virus X/potyviral synergistic disease in transgenic tobacco. Virology 206:583–590 [CrossRef]
    [Google Scholar]
  37. Vanitharani R., Chellappan P., Fauquet C. M. 2003; Short interfering RNA-mediated interference of gene expression and viral DNA accumulation in cultured plant cells. Proc Natl Acad Sci U S A 100:9632–9636 [CrossRef]
    [Google Scholar]
  38. Vanitharani R., Chellappan P., Pita J. S., Fauquet C. M. 2004; Differential roles of AC2 and AC4 of cassava geminiviruses in mediating synergism and suppression of posttranscriptional gene silencing. J Virol 78:9487–9493 [CrossRef]
    [Google Scholar]
  39. von Arnim A., Stanley J. 1992; Determinants of tomato golden mosaic virus symptom development located on DNA-B. Virology 186:286–293 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82873-0
Loading
/content/journal/jgv/10.1099/vir.0.82873-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error