1887

Abstract

Apoptosis has recently been associated with herpes simplex virus 1 (HSV-1) latency and disease severity. There is an intricate balance between pro- and anti-apoptotic processes during HSV-1 infection. When anti-apoptotic pathways are suppressed, this balance is upset and the cells die by apoptosis, referred to here as HSV-1-dependent apoptosis (HDAP). It has been observed previously that HeLa cancer cells exhibit an enhanced sensitivity to HDAP. Here, a series of specific patient-derived cancer cells was utilized to investigate the cell-type specificity of HDAP. The results showed that a human mammary tumour cell line was sensitive to HDAP, whilst syngeneic normal cells were resistant. Furthermore, low-passage-number primary human mammary epithelial cells were resistant to HDAP. When the susceptibility of human colon, brain, breast and cervical cancer cells was assessed, the only cells insensitive to HDAP were those resistant to all environmental stimuli tested. This implies that the HDAP resistance was probably due to mutations in the cellular apoptotic machinery. Thus, the susceptibility of cancer cells to HDAP requires that they possess a functional ability to undergo programmed cell death.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82868-0
2007-07-01
2024-11-03
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/7/1866.html?itemId=/content/journal/jgv/10.1099/vir.0.82868-0&mimeType=html&fmt=ahah

References

  1. Aubert M., Blaho J. A. 1999; The herpes simplex virus type 1 regulatory protein ICP27 is required for the prevention of apoptosis in infected human cells. J Virol 73:2803–2813
    [Google Scholar]
  2. Aubert M., Blaho J. A. 2001; Modulation of apoptosis during HSV infection in human cells. Microbes Infect 3:859–866 [CrossRef]
    [Google Scholar]
  3. Aubert M., Blaho J. A. 2003; Viral oncoapoptosis of human tumor cells. Gene Ther 10:1437–1445 [CrossRef]
    [Google Scholar]
  4. Aubert M., O'Toole J., Blaho J. A. 1999; Induction and prevention of apoptosis in human HEp-2 cells by herpes simplex virus type 1. J Virol 73:10359–10370
    [Google Scholar]
  5. Aubert M., Rice S. A., Blaho J. A. 2001; Accumulation of herpes simplex type 1 early and leaky-late proteins correlates with the prevention of apoptosis in infected human HEp-2 cells. J Virol 75:1013–1030 [CrossRef]
    [Google Scholar]
  6. Aubert M., Pomeranz L. E., Blaho J. A. 2007; Herpes simplex virus blocks apoptosis by precluding mitochondrial cytochrome c release independent of caspase activation in infected human epithelial cells. Apoptosis 12:19–35 [CrossRef]
    [Google Scholar]
  7. Avitabile E., Di Gaeta S., Torrisi M. R., Ward P. L., Roizman B., Campadelli-Fiume G. 1995; Redistribution of microtubules and Golgi apparatus in herpes simplex virus-infected cells and their role in viral exocytosis. J Virol 69:7472–7482
    [Google Scholar]
  8. Brown J. M., Wouters B. G. 1999; Apoptosis, p53, and tumor cell sensitivity to anticancer agents. Cancer Res 59:1391–1399
    [Google Scholar]
  9. Chen T. R. 1988; Re-evaluation of HeLa, HeLa S3, and HEp-2 karyotypes. Cytogenet Cell Genet 48:19–24 [CrossRef]
    [Google Scholar]
  10. Contreras G., Bather R., Furesz J., Becker B. C. 1985; Activation of metastatic potential in African green monkey kidney cell lines by prolonged in vitro culture. In Vitro Cell Dev Biol 21649–652 [CrossRef]
    [Google Scholar]
  11. Galvan V., Roizman B. 1998; Herpes simplex virus 1 induces and blocks apoptosis at multiple steps during infection and protects cells from exogenous inducers in a cell-type-dependent manner. Proc Natl Acad Sci U S A 95:3931–3936 [CrossRef]
    [Google Scholar]
  12. Goodkin M. L., Ting A. T., Blaho J. A. 2003; NF- κ B is required for apoptosis prevention during herpes simplex virus type 1 infection. J Virol 77:7261–7280 [CrossRef]
    [Google Scholar]
  13. Goodkin M. L., Morton E. R., Blaho J. A. 2004; Herpes simplex virus infection and apoptosis. Int Rev Immunol 23:141–172 [CrossRef]
    [Google Scholar]
  14. Graham F. L., Smiley J., Russell W. C., Nairn R. 1977; Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 36:59–74 [CrossRef]
    [Google Scholar]
  15. Gregory D., Hargett D., Holmes D., Money E., Bachenheimer S. L. 2004; Efficient replication by herpes simplex virus type 1 involves activation of the I κ B kinase-I κ B-p65 pathway. J Virol 78:13582–13590 [CrossRef]
    [Google Scholar]
  16. Gupta A., Gartner J. J., Sethupathy P., Hatzigeorgiou A. G., Fraser N. W. 2006; Anti-apoptotic function of a microRNA encoded by the HSV-1 latency-associated transcript. Nature 442:82–85
    [Google Scholar]
  17. Hackett A. J., Smith H. S., Springer E. L., Owens R. B., Nelson-Rees W. A., Riggs J. L., Gardner M. B. 1977; Two syngeneic cell lines from human breast tissue: the aneuploid mammary epithelial (Hs578T) and the diploid myoepithelial (Hs578Bst) cell lines. J Natl Cancer Inst 58:1795–1806
    [Google Scholar]
  18. Hampar B., Elison S. A. 1961; Chromosomal aberrations induced by an animal virus. Nature 192:145–147 [CrossRef]
    [Google Scholar]
  19. Heeg U., Dienes H. P., Muller S., Falke D. 1986; Involvement of actin-containing microfilaments in HSV-induced cytopathology and the influence of inhibitors of glycosylation. Arch Virol 91:257–270 [CrossRef]
    [Google Scholar]
  20. Jerome K. R., Fox R., Chen Z., Sears A. E., Lee H., Corey L. 1999; Herpes simplex virus inhibits apoptosis through the action of two genes, Us5 and Us3. J Virol 73:8950–8957
    [Google Scholar]
  21. Jerome K. R., Chen Z., Lang R., Torres M. R., Hofmeister J., Smith S., Fox R., Froelich C. J., Corey L. 2001; HSV and glycoprotein J inhibit caspase activation and apoptosis induced by granzyme B or Fas. J Immunol 167:3928–3935 [CrossRef]
    [Google Scholar]
  22. Johnson P. A., Miyanohara A., Levine F., Cahill T., Friedmann T. 1992; Cytotoxicity of a replication-defective mutant of herpes simplex virus type 1. J Virol 66:2952–2965
    [Google Scholar]
  23. Koyama A. H., Adachi A. 1997; Induction of apoptosis by herpes simplex virus type 1. J Gen Virol 78:2909–2912
    [Google Scholar]
  24. Kraft R. M., Nguyen M. L., Yang X. H., Thor A. D., Blaho J. A. 2006; Caspase 3 activation during herpes simplex virus 1 infection. Virus Res 120:163–175 [CrossRef]
    [Google Scholar]
  25. Leopardi R., Roizman B. 1996; The herpes simplex virus major regulatory protein ICP4 blocks apoptosis induced by the virus or by hyperthermia. Proc Natl Acad Sci U S A 93:9583–9587 [CrossRef]
    [Google Scholar]
  26. Leopardi R., Van Sant C., Roizman B. 1997; The herpes simplex virus 1 protein kinase US3 is required for protection from apoptosis induced by the virus. Proc Natl Acad Sci U S A 94:7891–7896 [CrossRef]
    [Google Scholar]
  27. Lichtenstein D. L., Toth K., Doronin K., Tollefson A. E., Wold W. S. 2004; Functions and mechanisms of action of the adenovirus E3 proteins. Int Rev Immunol 23:75–111 [CrossRef]
    [Google Scholar]
  28. Liu Q. Y., Stein C. A. 1997; Taxol and estramustine-induced modulation of human prostate cancer cell apoptosis via alteration in bcl-xL and bak expression. Clin Cancer Res 3:2039–2046
    [Google Scholar]
  29. Miles D., Athmanathan S., Thakur A., Willcox M. 2003; A novel apoptotic interaction between HSV-1 and human corneal epithelial cells. Curr Eye Res 26:165–174 [CrossRef]
    [Google Scholar]
  30. Nelson-Rees W. A., Zhdanov V. M., Hawthorne P. K., Flandermeyer R. R. 1974; HeLa-like marker chromosomes and type-A variant glucose-6-phosphate dehydrogenase isoenzyme in human cell cultures producing Mason-Pfizer monkey virus-like particles. J Natl Cancer Inst 53:751–757
    [Google Scholar]
  31. Nguyen M. L., Blaho J. A. 2007; Apoptosis during herpes simplex virus infection. Adv Virus Res 69:67–97
    [Google Scholar]
  32. Nguyen M. L., Kraft R. M., Blaho J. A. 2005; African green monkey kidney Vero cells require de novo protein synthesis for efficient herpes simplex virus 1-dependent apoptosis. Virology 336:274–290 [CrossRef]
    [Google Scholar]
  33. Ogura H., Yoshinouchi M., Kudo T., Imura M., Fujiwara T., Yabe Y. 1993; Human papillomavirus type 18 DNA in so-called HEP-2, KB and FL cells – further evidence that these cells are HeLa cell derivatives. Cell Mol Biol (Noisy-le-grand) 39:463–467
    [Google Scholar]
  34. Paterson T., Preston V. G., Everett R. D. 1990; A mutant of herpes simplex virus type 1 immediate early polypeptide Vmw175 binds to the cap site of its own promoter in vitro but fails to autoregulate in vivo . J Gen Virol 71:851–861 [CrossRef]
    [Google Scholar]
  35. Peng W., Henderson G., Inman M., BenMohamed L., Perng G. C., Wechsler S. L., Jones C. 2005; The locus encompassing the latency-associated transcript of herpes simplex virus type 1 interferes with and delays interferon expression in productively infected neuroblastoma cells and trigeminal ganglia of acutely infected mice. J Virol 79:6162–6171 [CrossRef]
    [Google Scholar]
  36. Perng G. C., Jones C., Ciacci-Zanella J., Stone M., Henderson G., Yukht A., Slanina S. M., Hofman F. M., Ghiasi H. other authors 2000; Virus-induced neuronal apoptosis blocked by the herpes simplex virus latency-associated transcript. Science 287:1500–1503 [CrossRef]
    [Google Scholar]
  37. Roizman B. 1962; Polykaryocytosis induced by viruses. Proc Natl Acad Sci U S A 48:228–234 [CrossRef]
    [Google Scholar]
  38. Roizman B., Roanne P. R. 1964; Multiplication of herpes simplex virus. II. The relationship between protein synthesis and the duplication of viral DNA in infected HEp-2 cells. Virology 22:262–269 [CrossRef]
    [Google Scholar]
  39. Sabri F., Granath F., Hjalmarsson A., Aurelius E., Skoldenberg B. 2006; Modulation of sFas indicates apoptosis in human herpes simplex encephalitis. J Neuroimmunol 171:171–176 [CrossRef]
    [Google Scholar]
  40. Samaniego L. A., Wu N., DeLuca N. A. 1997; The herpes simplex virus immediate-early protein ICP0 affects transcription from the viral genome and infected-cell survival in the absence of ICP4 and ICP27. J Virol 71:4614–4625
    [Google Scholar]
  41. Sanfilippo C. M., Blaho J. A. 2003; The facts of death. Int Rev Immunol 22:327–340 [CrossRef]
    [Google Scholar]
  42. Sanfilippo C. M., Blaho J. A. 2006; ICP0 gene expression is a herpes simplex virus type 1 apoptotic trigger. J Virol 80:6810–6821 [CrossRef]
    [Google Scholar]
  43. Sanfilippo C. M., Chirimuuta F. N., Blaho J. A. 2004; Herpes simplex virus type 1 immediate-early gene expression is required for the induction of apoptosis in human epithelial HEp-2 cells. J Virol 78:224–239 [CrossRef]
    [Google Scholar]
  44. Sekulovich R. E., Leary K., Sandri-Goldin R. M. 1988; The herpes simplex virus type 1 alpha protein ICP27 can act as a trans -repressor or a trans -activator in combination with ICP4 and ICP0. J Virol 62:4510–4522
    [Google Scholar]
  45. Soliman T. M., Sandri-Goldin R. M., Silverstein S. J. 1997; Shuttling of the herpes simplex virus type 1 regulatory protein ICP27 between the nucleus and cytoplasm mediates the expression of late proteins. J Virol 71:9188–9197
    [Google Scholar]
  46. Yedowitz J. C., Blaho J. A. 2005; Herpes simplex virus 2 modulates apoptosis and stimulates NF- κ B nuclear translocation during infection in human epithelial HEp-2 cells. Virology 342:297–310 [CrossRef]
    [Google Scholar]
/content/journal/jgv/10.1099/vir.0.82868-0
Loading
/content/journal/jgv/10.1099/vir.0.82868-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error