1887

Abstract

Adenovirus is a significant pathogen in immunocompromised patients and is widely utilized as a gene delivery vector, so a detailed understanding of the human immune response to adenovirus infection is critical. This study characterized the adenovirus-specific CD4 T-cell response of healthy donors by incubation with whole virus or with individual hexon and fiber proteins. Adenovirus-specific CD4 T cells averaged 0.26 % of the CD4 T-cell pool and were detectable in all donors. T cells recognizing the highly conserved hexon protein accounted for 0.09 %, whereas no response was observed against the fiber protein. A panel of hexon-specific CD4 T-cell clones was generated and shown to lyse targets infected with adenovirus from different serotypes and species. Three CD4 T-cell epitopes are described, which map to highly conserved regions of the hexon protein.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82867-0
2007-09-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/9/2417.html?itemId=/content/journal/jgv/10.1099/vir.0.82867-0&mimeType=html&fmt=ahah

References

  1. Adhikary, D., Behrends, U., Moosmann, A., Witter, K., Bornkamm, G. W. & Mautner, J. ( 2006; ). Control of Epstein–Barr virus infection in vitro by T helper cells specific for virion glycoproteins. J Exp Med 203, 995–1006.[CrossRef]
    [Google Scholar]
  2. Bennett, S. R., Carbone, F. R., Karamalis, F., Flavell, R. A., Miller, J. F. & Heath, W. R. ( 1998; ). Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature 393, 478–480.[CrossRef]
    [Google Scholar]
  3. Bollard, C. M., Kuehnle, I., Leen, A., Rooney, C. M. & Heslop, H. E. ( 2004; ). Adoptive immunotherapy for posttransplantation viral infections. Biol Blood Marrow Transplant 10, 143–155.[CrossRef]
    [Google Scholar]
  4. Bordigoni, P., Carret, A. S., Venard, V., Witz, F. & Le Faou, A. ( 2001; ). Treatment of adenovirus infections in patients undergoing allogeneic hematopoietic stem cell transplantation. Clin Infect Dis 32, 1290–1297.[CrossRef]
    [Google Scholar]
  5. Brown, D. M., Roman, E. & Swain, S. L. ( 2004; ). CD4 T cell responses to influenza infection. Semin Immunol 16, 171–177.[CrossRef]
    [Google Scholar]
  6. Burns, D. M. & Crawford, D. H. ( 2004; ). Epstein–Barr virus-specific cytotoxic T-lymphocytes for adoptive immunotherapy of post-transplant lymphoproliferative disease. Blood Rev 18, 193–209.[CrossRef]
    [Google Scholar]
  7. Chakrabarti, S., Mautner, V., Osman, H., Collingham, K. E., Fegan, C. D., Klapper, P. E., Moss, P. A. & Milligan, D. W. ( 2002; ). Adenovirus infections following allogeneic stem cell transplantation: incidence and outcome in relation to graft manipulation, immunosuppression, and immune recovery. Blood 100, 1619–1627.[CrossRef]
    [Google Scholar]
  8. Ebner, K., Pinsker, W. & Lion, T. ( 2005; ). Comparative sequence analysis of the hexon gene in the entire spectrum of human adenovirus serotypes: phylogenetic, taxonomic, and clinical implications. J Virol 79, 12635–12642.[CrossRef]
    [Google Scholar]
  9. Einsele, H. & Hebart, H. ( 2004; ). CMV-specific immunotherapy. Hum Immunol 65, 558–564.[CrossRef]
    [Google Scholar]
  10. Engler, J. A., Mulach, B. & Hong, J. S. ( 1999; ). Characterization of the adenovirus fiber protein. In Adenovirus Methods and Protocols, pp. 241–259. Edited by W. S. M. Wold. Totowa, NJ: Humana Press.
  11. Feuchtinger, T., Richard, C., Pfeiffer, M., Neuhauser, F., Lucke, J., Handgretinger, R., Greil, J., Bader, P., Klingebiel, T. & other authors ( 2005; ). Adenoviral infections after transplantation of positive selected stem cells from haploidentical donors in children: an update. Klin Padiatr 217, 339–344.[CrossRef]
    [Google Scholar]
  12. Feuchtinger, T., Matthes-Martin, S., Richard, C., Lion, T., Fuhrer, M., Hamprecht, K., Handgretinger, R., Peters, C., Schuster, F. R. & other authors ( 2006; ). Safe adoptive transfer of virus-specific T-cell immunity for the treatment of systemic adenovirus infection after allogeneic stem cell transplantation. Br J Haematol 134, 64–76.[CrossRef]
    [Google Scholar]
  13. Flomenberg, P., Babbitt, J., Drobyski, W. R., Ash, R. C., Carrigan, D. R., Sedmak, G. V., McAuliffe, T., Camitta, B., Horowitz, M. M. & other authors ( 1994; ). Increasing incidence of adenovirus disease in bone marrow transplant recipients. J Infect Dis 169, 775–781.[CrossRef]
    [Google Scholar]
  14. Flomenberg, P., Piaskowski, V., Truitt, R. L. & Casper, J. T. ( 1996; ). Human adenovirus-specific CD8+ T-cell responses are not inhibited by E3-19K in the presence of gamma interferon. J Virol 70, 6314–6322.
    [Google Scholar]
  15. Fox, J. P., Brandt, C. D., Wassermann, F. E., Hall, C. E., Spigland, I., Kogon, A. & Elveback, L. R. ( 1969; ). The virus watch program: a continuing surveillance of viral infections in metropolitan New York families. VI. Observations of adenovirus infections: virus excretion patterns, antibody response, efficiency of surveillance, patterns of infections, and relation to illness. Am J Epidemiol 89, 25–50.
    [Google Scholar]
  16. Fox, J. P., Hall, C. E. & Cooney, M. K. ( 1977; ). The Seattle Virus Watch. VII. Observations of adenovirus infections. Am J Epidemiol 105, 362–386.
    [Google Scholar]
  17. Gamadia, L. E., Remmerswaal, E. B., Weel, J. F., Bemelman, F., Van Lier, R. A. & Ten Berge, I. J. ( 2003; ). Primary immune responses to human CMV: a critical role for IFN-γ-producing CD4+ T cells in protection against CMV disease. Blood 101, 2686–2692.[CrossRef]
    [Google Scholar]
  18. Garnett, C. T., Erdman, D., Xu, W. & Gooding, L. R. ( 2002; ). Prevalence and quantitation of species C adenovirus DNA in human mucosal lymphocytes. J Virol 76, 10608–10616.[CrossRef]
    [Google Scholar]
  19. Haase, A. T., Mautner, V. & Pereira, H. G. ( 1972; ). The immunogenicity of adenovirus type 5 structural proteins. J Immunol 108, 483–485.
    [Google Scholar]
  20. Hale, G. A., Heslop, H. E., Krance, R. A., Brenner, M. A., Jayawardene, D., Srivastava, D. K. & Patrick, C. C. ( 1999; ). Adenovirus infection after pediatric bone marrow transplantation. Bone Marrow Transplant 23, 277–282.[CrossRef]
    [Google Scholar]
  21. Haveman, L. M., Bierings, M., Legger, E., Klein, M. R., de Jager, W., Otten, H. G., Albani, S., Kuis, W., Sette, A. & Prakken, B. J. ( 2006; ). Novel pan-DR-binding T cell epitopes of adenovirus induce pro-inflammatory cytokines and chemokines in healthy donors. Int Immunol 18, 1521–1529.[CrossRef]
    [Google Scholar]
  22. Heemskerk, B., Veltrop-Duits, L. A., van Vreeswijk, T., ten Dam, M. M., Heidt, S., Toes, R. E., van Tol, M. J. & Schilham, M. W. ( 2003; ). Extensive cross-reactivity of CD4+ adenovirus-specific T cells: implications for immunotherapy and gene therapy. J Virol 77, 6562–6566.[CrossRef]
    [Google Scholar]
  23. Heemskerk, B., van Vreeswijk, T., Veltrop-Duits, L. A., Sombroek, C. C., Franken, K., Verhoosel, R. M., Hiemstra, P. S., van Leeuwen, D., Ressing, M. E. & other authors ( 2006; ). Adenovirus-specific CD4+ T cell clones recognizing endogenous antigen inhibit viral replication in vitro through cognate interaction. J Immunol 177, 8851–8859.[CrossRef]
    [Google Scholar]
  24. Homann, D., Teyton, L. & Oldstone, M. B. ( 2001; ). Differential regulation of antiviral T-cell immunity results in stable CD8+ but declining CD4+ T-cell memory. Nat Med 7, 913–919.[CrossRef]
    [Google Scholar]
  25. Horwitz, M. S. ( 2001; ). Adenoviruses. In Fields Virology, pp. 2301–2326. Edited by B. N. Fields & D. M. Knipe. Philadelphia: Lippincott Williams & Wilkins.
  26. Hromas, R., Cornetta, K., Srour, E., Blanke, C. & Broun, E. R. ( 1994; ). Donor leukocyte infusion as therapy of life-threatening adenoviral infections after T-cell-depleted bone marrow transplantation. Blood 84, 1689–1690.
    [Google Scholar]
  27. Janssen, E. M., Lemmens, E. E., Wolfe, T., Christen, U., von Herrath, M. G. & Schoenberger, S. P. ( 2003; ). CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature 421, 852–856.[CrossRef]
    [Google Scholar]
  28. Kahn, P. ( 2003; ). Update on Merck's AIDS Vaccine Program. IAVI Rep 7
    [Google Scholar]
  29. Khanna, R., Burrows, S. R., Steigerwald-Mullen, P. M., Thomson, S. A., Kurilla, M. G. & Moss, D. J. ( 1995; ). Isolation of cytotoxic T lymphocytes from healthy seropositive individuals specific for peptide epitopes from Epstein–Barr virus nuclear antigen 1: implications for viral persistence and tumor surveillance. Virology 214, 633–637.[CrossRef]
    [Google Scholar]
  30. Klenerman, P. & Hill, A. ( 2005; ). T cells and viral persistence: lessons from diverse infections. Nat Immunol 6, 873–879.[CrossRef]
    [Google Scholar]
  31. Kojaoghlanian, T., Flomenberg, P. & Horwitz, M. S. ( 2003; ). The impact of adenovirus infection on the immunocompromised host. Rev Med Virol 13, 155–171.[CrossRef]
    [Google Scholar]
  32. Leen, A. M. & Rooney, C. M. ( 2005; ). Adenovirus as an emerging pathogen in immunocompromised patients. Br J Haematol 128, 135–144.[CrossRef]
    [Google Scholar]
  33. Leen, A., Meij, P., Redchenko, I., Middeldorp, J., Bloemena, E., Rickinson, A. & Blake, N. ( 2001; ). Differential immunogenicity of Epstein–Barr virus latent-cycle proteins for human CD4+ T-helper 1 responses. J Virol 75, 8649–8659.[CrossRef]
    [Google Scholar]
  34. Leen, A. M., Sili, U., Vanin, E. F., Jewell, A. M., Xie, W., Vignali, D., Piedra, P. A., Brenner, M. K. & Rooney, C. M. ( 2004; ). Conserved CTL epitopes on the adenovirus hexon protein expand subgroup cross-reactive and subgroup-specific CD8+ T cells. Blood 104, 2432–2440.[CrossRef]
    [Google Scholar]
  35. Leen, A. M., Myers, G. D., Sili, U., Huls, M. H., Weiss, H., Leung, K. S., Carrum, G., Krance, R. A., Chang, C. C. & other authors ( 2006; ). Monoculture-derived T lymphocytes specific for multiple viruses expand and produce clinically relevant effects in immunocompromised individuals. Nat Med 12, 1160–1166.[CrossRef]
    [Google Scholar]
  36. Lion, T., Baumgartinger, R., Watzinger, F., Matthes-Martin, S., Suda, M., Preuner, S., Futterknecht, B., Lawitschka, A., Peters, C. & other authors ( 2003; ). Molecular monitoring of adenovirus in peripheral blood after allogeneic bone marrow transplantation permits early diagnosis of disseminated disease. Blood 102, 1114–1120.[CrossRef]
    [Google Scholar]
  37. Long, H. M., Haigh, T. A., Gudgeon, N. H., Leen, A. M., Tsang, C. W., Brooks, J., Landais, E., Houssaint, E., Lee, S. P. & other authors ( 2005; ). CD4+ T-cell responses to Epstein–Barr virus (EBV) latent-cycle antigens and the recognition of EBV-transformed lymphoblastoid cell lines. J Virol 79, 4896–4907.[CrossRef]
    [Google Scholar]
  38. Lucas, M., Day, C. L., Wyer, J. R., Cunliffe, S. L., Loughry, A., McMichael, A. J. & Klenerman, P. ( 2004; ). Ex vivo phenotype and frequency of influenza virus-specific CD4 memory T cells. J Virol 78, 7284–7287.[CrossRef]
    [Google Scholar]
  39. Miller, G. & Lipman, M. ( 1973; ). Release of infectious Epstein–Barr virus by transformed marmoset leukocytes. Proc Natl Acad Sci U S A 70, 190–194.[CrossRef]
    [Google Scholar]
  40. Miyamoto, T., Gondo, H., Miyoshi, Y., Shigematsu, H., Minematsu, T., Takenaka, K., Tanimoto, K., Horiuchi, T., Asano, Y. & other authors ( 1998; ). Early viral complications following CD34-selected autologous peripheral blood stem cell transplantation for non-Hodgkin's lymphoma. Br J Haematol 100, 348–350.[CrossRef]
    [Google Scholar]
  41. Mullbacher, A., Bellett, A. J. & Hla, R. T. ( 1989; ). The murine cellular immune response to adenovirus type 5. Immunol Cell Biol 67, 31–39.[CrossRef]
    [Google Scholar]
  42. Murakami, P. & McCaman, M. T. ( 1999; ). Quantitation of adenovirus DNA and virus particles with the PicoGreen fluorescent dye. Anal Biochem 274, 283–288.[CrossRef]
    [Google Scholar]
  43. Neumann, R., Genersch, E. & Eggers, H. J. ( 1987; ). Detection of adenovirus nucleic acid sequences in human tonsils in the absence of infectious virus. Virus Res 7, 93–97.[CrossRef]
    [Google Scholar]
  44. Olive, M., Eisenlohr, L. C. & Flomenberg, P. ( 2001; ). Quantitative analysis of adenovirus-specific CD4+ T-cell responses from healthy adults. Viral Immunol 14, 403–413.[CrossRef]
    [Google Scholar]
  45. Olive, M., Eisenlohr, L., Flomenberg, N., Hsu, S. & Flomenberg, P. ( 2002; ). The adenovirus capsid protein hexon contains a highly conserved human CD4+ T-cell epitope. Hum Gene Ther 13, 1167–1178.[CrossRef]
    [Google Scholar]
  46. Rammensee, H., Bachmann, J., Emmerich, N. P., Bachor, O. A. & Stevanovic, S. ( 1999; ). SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50, 213–219.[CrossRef]
    [Google Scholar]
  47. Rawle, F. C., Knowles, B. B., Ricciardi, R. P., Brahmacheri, V., Duerksen-Hughes, P., Wold, W. S. & Gooding, L. R. ( 1991; ). Specificity of the mouse cytotoxic T lymphocyte response to adenovirus 5. E1A is immunodominant in H-2b, but not in H-2d or H-2k mice. J Immunol 146, 3977–3984.
    [Google Scholar]
  48. Ridge, J. P., Di Rosa, F. & Matzinger, P. ( 1998; ). A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 393, 474–478.[CrossRef]
    [Google Scholar]
  49. Rowe, W. P., Huebner, R. J., Gilmore, L. K., Parrott, R. H. & Ward, T. G. ( 1953; ). Isolation of a cytopathogenic agent from human adenoids undergoing spontaneous degeneration in tissue culture. Proc Soc Exp Biol Med 84, 570–573.[CrossRef]
    [Google Scholar]
  50. Rux, J. J., Kuser, P. R. & Burnett, R. M. ( 2003; ). Structural and phylogenetic analysis of adenovirus hexons by use of high-resolution X-ray crystallographic, molecular modeling, and sequence-based methods. J Virol 77, 9553–9566.[CrossRef]
    [Google Scholar]
  51. Schoenberger, S. P., Toes, R. E., van der Voort, E. I., Offringa, R. & Melief, C. J. ( 1998; ). T-cell help for cytotoxic T lymphocytes is mediated by CD40–CD40L interactions. Nature 393, 480–483.[CrossRef]
    [Google Scholar]
  52. Scriba, T. J., Purbhoo, M., Day, C. L., Robinson, N., Fidler, S., Fox, J., Weber, J. N., Klenerman, P., Sewell, A. K. & Phillips, R. E. ( 2005; ). Ultrasensitive detection and phenotyping of CD4+ T cells with optimized HLA class II tetramer staining. J Immunol 175, 6334–6343.[CrossRef]
    [Google Scholar]
  53. Sester, M., Sester, U., Alarcon, S. S., Heine, G., Lipfert, S., Girndt, M., Gartner, B. & Kohler, H. ( 2002; ). Age-related decrease in adenovirus-specific T cell responses. J Infect Dis 185, 1379–1387.[CrossRef]
    [Google Scholar]
  54. Smith, C. A., Woodruff, L. S., Kitchingman, G. R. & Rooney, C. M. ( 1996; ). Adenovirus-pulsed dendritic cells stimulate human virus-specific T-cell responses in vitro. J Virol 70, 6733–6740.
    [Google Scholar]
  55. Stone, D., Ni, S., Li, Z. Y., Gaggar, A., DiPaolo, N., Feng, Q., Sandig, V. & Lieber, A. ( 2005; ). Development and assessment of human adenovirus type 11 as a gene transfer vector. J Virol 79, 5090–5104.[CrossRef]
    [Google Scholar]
  56. Tang, J., Olive, M., Pulmanausahakul, R., Schnell, M., Flomenberg, N., Eisenlohr, L. & Flomenberg, P. ( 2006; ). Human CD8+ cytotoxic T cell responses to adenovirus capsid proteins. Virology 350, 312–322.[CrossRef]
    [Google Scholar]
  57. Thirion, C., Lochmuller, H., Ruzsics, Z., Boelhauve, M., Konig, C., Thedieck, C., Kutik, S., Geiger, C., Kochanek, S. & other authors ( 2006; ). Adenovirus vectors based on human adenovirus type 19a have high potential for human muscle-directed gene therapy. Hum Gene Ther 17, 193–205.[CrossRef]
    [Google Scholar]
  58. Vanniasinkam, T. & Ertl, H. C. ( 2005; ). Adenoviral gene delivery for HIV-1 vaccination. Curr Gene Ther 5, 203–212.[CrossRef]
    [Google Scholar]
  59. Veltrop-Duits, L. A., Heemskerk, B., Sombroek, C. C., van Vreeswijk, T., Gubbels, S., Toes, R. E., Melief, C. J., Franken, K. L., Havenga, M. & other authors ( 2006; ). Human CD4+ T cells stimulated by conserved adenovirus 5 hexon peptides recognize cells infected with different species of human adenovirus. Eur J Immunol 36, 2410–2423.[CrossRef]
    [Google Scholar]
  60. Vogels, R., Zuijdgeest, D., van Rijnsoever, R., Hartkoorn, E., Damen, I., de Bethune, M. P., Kostense, S., Penders, G., Helmus, N. & other authors ( 2003; ). Replication-deficient human adenovirus type 35 vectors for gene transfer and vaccination: efficient human cell infection and bypass of preexisting adenovirus immunity. J Virol 77, 8263–8271.[CrossRef]
    [Google Scholar]
  61. Xing, Z., Santosuosso, M., McCormick, S., Yang, T. C., Millar, J., Hitt, M., Wan, Y., Bramson, J. & Vordermeier, H. M. ( 2005; ). Recent advances in the development of adenovirus- and poxvirus-vectored tuberculosis vaccines. Curr Gene Ther 5, 485–492.[CrossRef]
    [Google Scholar]
  62. Young, L. S., Searle, P. F., Onion, D. & Mautner, V. ( 2006; ). Viral gene therapy strategies: from basic science to clinical application. J Pathol 208, 299–318.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82867-0
Loading
/content/journal/jgv/10.1099/vir.0.82867-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error